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Introduction Compilation time of a software project is an
important factor in how easily the project can be changed.
When the compilation time is low, it is cheap to experiments
with changes to the project, which can be tested immediately
after recompilation. Therefore, fast recompilation has been
a topic of interest for a long time [1].

One way to speed up recompilation is to save intermediate
results during compilation. If parts of the program do not
change, then the intermediate results of those parts can be
reused. The term separate compilation applies to compilation
where intermediate results are saved per file [4]. For sub-file
level tracking of changes and intermediate results, the term
incremental compilation is used [8, 7].

Although incremental compilation has clear benefits for
recompilation speed, it is not trivial to implement one. Lan-
guage features can sometimes make incremental compilation
difficult, because they may allow one piece of code to influence
compilation of a distant piece of code. Such cross-file defi-
nitions have forced some languages to use a whole-program
compiler, which scales linearly or worse with the size of a
project.

We introduce a design approach for incremental compilers
that we believe may be applicable to other languages. We
demonstrate it on the critical case of Stratego [3, 2], a term
rewriting language with open extensibility features. After
a brief overview of the open extensibility features, we show
our compilation method, which is somewhere in between
separate and incremental compilation. Our approach allows
us to reuse almost all of the existing compiler while gaining
great improvements in recompilation speed. We evaluate
the new compiler with a benchmark on the version control
history of a large Stratego project.

Stratego Stratego is a tree transformation language with
rewrite rules and strategies. Such rules and strategies are
defined by name, and multiple definitions with the same name
are merged as different options of the rule or strategy. This
works over different files, which is used as an extensibility
mechanism.
This extensibility mechanism can, for example, be used

to desugar language features to a core language. The core
language can be defined in one module with an identity
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Figure 1: Static linking model. A frontend task for each
file, backend task for each strategy.

desugaring, and different extensions of the language and the
corresponding desugaring can be written in their own mod-
ule. To support this extensibility mechanism, the Stratego
compiler has always used whole-program compilation.

Incremental Compilation To achieve incremental com-
pilation, we split up the compiler into a front-end and a
back-end1. The front-end is adapted so it can be called
separately on each file. It no longer does static checks that
require information from other files. The front-end then gen-
erates an intermediate representation for each strategy, and
the necessary information that can be used to do the static
checks that were removed. The static checking information
is aggregated for all files. Checking is done once all files have
been processed by a front-end task.

The back-end is adapted so it can be called separately on
each strategy. We first merge definitions of the same name
from different front-ends. Then we can apply the adapted
back-end code to produce the expected Java class for each
definition.

See Figure 1 for a diagram of the front- and back-end tasks
on an example. The main task orchestrates everything and
receives the main file as input. It starts a front-end task
for the main file, and receives the processed information of
the file. It uses imports to find more files to process with
front-end tasks. The static checks are done within the main
task. After the static checks, back-end tasks are run for each

1This was already the internal architecture of the compiler.
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Figure 2: Benchmark results for WebDSL commit history. The tail end of 1 file commits has been truncated to make the
figure more readable. The truncated tail has 50 more 1 file commits that taper off to 2 seconds total time.

strategy. A last back-end task generates some boilerplate
classes based on a list of all strategies.

The network of tasks is created with the PIE incremental
build system [6, 5]. PIE incrementally executes affected tasks
when given a set of changed files. We characterise our new
compiler as an incremental compiler, but perhaps a more
accurate description is a multi-stage separate compiler. It
applies separate compilation in that it will process a whole
file to intermediate representation when part of the file is
changed, through a front-end task. However, it only generates
code for actually changed definitions, through a back-end
task. This resembles incremental compilation and has much
of the benefits.

Design Approach The general design approach here is to
split up files into units that can be processed independently.
The earlier this split is made, the less other stages need
to redo when a one of those units is changed in a file. In
the case of Stratego, top-level strategy definitions are the
independent units.
These independent units can be recombined later when

necessary. In Stratego’s case this is before code generation,
as each strategy of the same name has to be combined into
one Java class in the compiler output. Notably, the units
need not have come from the same original file, which is
exactly what we need to compile Stratego.
Of course the units can still have some influence on each

other, most likely during static analysis. For Stratego we
simply added all information for static analysis together.
This means that the static analysis is not incremental. Early
measurements already showed that the static analysis is not
a large factor in the total compile time, therefore we did
not pursue a more incremental solution. Such a solution
would be difficult to express in PIE anyway, as Stratego’s

imports may form cycles, and easily do so because they are
transitive. As task dependencies may not have cycles in PIE,
we would have to work around that limitation in our task
model. But other languages may lend themselves better to
incremental static analysis. For example, Modula-2 produces
static analysis summaries for each input file [9].

Evaluation To evaluate our new compiler for Stratego, we
benchmark a large Stratego project (27 KLOC excluding
whitespace and comments). We replay its commits from
version control and run our incremental compiler for each
commit.

We run this benchmark in a virtual machine so the machine
image can be easily reused by others to rerun our experiments.
The virtualisation makes the absolute time measurements
slightly higher than when run natively. The virtual machine
runs on a MacBook Pro (Early 2013), with an Intel Core i7
2.8GHz CPU, 16 GB 1600 MHz DDR3 memory and an SSD
harddisk.
Figure 2 shows the results of the incremental runs on

commits of the history. We order the commits by number of
changed files, seen on the x-axis. The y-axis values show how
all compilations took under 50 seconds, and the more likely
scenarios for an incremental compiler—up to 10 changed
files—takes between 2 and 20 seconds. The original Stratego
compiler takes roughly 130 seconds to compile the entire
project, and, crucially, takes that amount of time for every
commit.

Conclusion We have introduced a design approach for
incremental compilers that fits languages with cross-file defi-
nitions. We demonstrated this approach on the critical case
of Stratego. The result is a multi-stage separate/incremental
compiler that has a 2.6-65x speedup for compilation over the
last 2 years of history of a large Stratego project.
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