
Automated Evaluation of Syntax Error Recovery

Maartje de Jonge
Delft University of Technology

Netherlands

Eelco Visser
Delft University of Technology

Netherlands

ABSTRACT
Evaluation of parse error recovery techniques is an open problem.
The community lacks objective standards and methods to measure
the quality of recovery results. This paper proposes an automated
technique for recovery evaluation that offers a solution for two
main problems in this area. First, a representative testset is gener-
ated by a mutation based fuzzing technique that applies knowledge
about common syntax errors. Secondly, the quality of the recovery
results is automatically measured using an oracle-based evaluation
technique. We evaluate the validity of our approach by comparing
results obtained by automated evaluation with results obtained by
manual inspection. The evaluation shows a clear correspondence
between our quality metric and human judgement.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Parsing

General Terms
Languages, Measurement

Keywords
Error Recovery, Parsing, IDE, Evaluation, Test Generation

1. INTRODUCTION
Integrated development environments (IDEs) increase program-

mer productivity by offering language specific editor services. These
services require as input a structured representation of the source
code in the form of an abstract syntax tree (AST) constructed by
the parser. To provide rapid syntactic and semantic feedback, IDEs
interactively parse programs as they are edited. As the user ed-
its a program, it is often in a syntactically invalid state. Parse er-
ror recovery techniques can diagnose and report parse errors, and
can construct ASTs for syntactically invalid programs.Thus, to suc-
cessfully apply a parser in an interactive setting, proper parse error
recovery is essential.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3âĂŞ7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

Evaluation of error recovery techniques is an open problem in
the area of parsing technology. An objective and automated eval-
uation method is essential to do benchmark comparisons between
existing techniques, and to detect regression in recovery quality due
to adaptations of the parser implementation. Currently, the com-
munity lacks objective standards and methods for performing thor-
ough evaluations. We identified two challenges: first, the recovery
technique must be evaluated against a representative set of test in-
puts, secondly, the recovery outputs must be automatically evalu-
ated against a quality metric. The aim of this paper is to provide an
automated method for evaluating error-recovery techniques.

Test Data. The first challenge for recovery evaluation is to ob-
tain a representative test suite. Evaluations in the literature often
use manually constructed test suites based on assumptions about
which kind of errors are the most common [3, 8]. The lack of
empirical evidence for these assumptions raises the question how
representative the test cases are, and how well the technique works
in general. Furthermore, manually constructed test suites tend to
be biased because in many cases the same assumptions about edit
behavior are used in the recovery algorithm as well as in the test set
that measures its quality. Many test inputs need to be constructed
to obtain a test set that is statistically significant. Thus, manual
construction of test inputs is a tedious task that easily introduces a
selection bias.

A better option for obtaining representative test data is to con-
struct a test suite based on collected data, an approach which is
taken in [9] and [10]. However, collecting practical data requires
administration effort and may be impossible for new languages that
are not used in practice yet. Furthermore, practical data does not
easily provide insight into what kind of syntax errors are evaluated,
nor does it offer the possibility to evaluate specific types of syntax
errors specified by the compiler tester.

As an alternative to collecting edit scenarios in practice, this pa-
per investigates the idea of generating edit scenarios. The core of
our technique is a general framework for iterative generation of
syntactically incorrect files. To ensure that the generated files are
realistic program files, the generator uses a mutation based fuzzing
technique that generates a large set of erroneous files from a small
set of correct input files. To ensure that the generated errors are
realistic, the generator implements knowledge about editing behav-
ior of real users, which was retrieved from an empirical study. The
edit behavior is implemented by error generation rules that specify
how to construct an erroneous fragment from a syntactically cor-
rect fragment. The generation framework provides extension points
were compiler testers can hook in custom error generation rules to
test the recovery of syntax errors that are specific for a given lan-
guage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’12, September 3–7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00

322

Quality Measurement. The second challenge for recovery eval-
uation is to provide a systematic method to measure the quality of
the parser output, e.g., the recovered AST. Human judgement is
decisive with respect to the quality of recovery results. For this
reason, Pennello and DeRemer [9] introduce human criteria to cat-
egorize recovery results. A recovery is rated excellent if it is the
one a human reader would make, good if it results in a reasonable
program without spurious or missed errors, and poor if it intro-
duces spurious errors or if excessive token deletion occurs. Though
human criteria most accurately measure recovery quality, applica-
tion of these criteria requires manual inspection of the parse results
which makes the evaluation subjective and inapplicable in an auto-
mated setting.

Oracle-based approaches form an alternative to manual inspec-
tion. First, the intended program is constructed manually. Then,
the recovered program is compared to the intended program using
a diff based metric on either the ASTs or the textual representations
obtained after pretty printing. An oracle-based evaluation method
is applied in [3] and [8]. The former uses textual diffs on pretty-
printed ASTs, while the latter uses tree alignment distance [6] as a
metric.

An intrinsic problem with these approaches is that in a significant
number of cases the optimal recovery is questionable, or arguable
not unique. For example, the broken arithmetic expression 1 2 has
many reasonable recover interpretations, such as: 1 + 2, 1 * 2, 1,
and 2. The oracle program specifies only one of these solutions as
the optimal solution. As a consequence, the alternative equivalent
solutions will be rated lower than the specified solution.

A second concern is the lack of automation. Differential oracle
approaches allow automated evaluation, but the intended files must
be specified manually which requires considerable effort for large
test suites. Furthermore, the intended recovery may be specified
after inspecting the recovery suggestion in the editor, which causes
a bias towards the technique implemented in the editor.

To address the concern of automation, we extend the error gen-
erator so that it generates erroneous files together with their oracle
interpretations. The oracle interpretations follow the interpretation
of the base file, except for the affected code structures; for these
structures, an oracle generation rule is implemented that specifies
how the intended interpretation is constructed from the original in-
terpretation. Oracle generation rules are complementary to error
generation rules, e.g., the constructed oracle interpretation must be
in line with the textual modifications applied to the code structure
by the error generation rule.

To address the concern of multiple equivalent recovery alterna-
tives, a placeholder oracle can be specified that serves as a wild-
card for the interpretation of an erroneous structure. Correct struc-
tures that are substructures of the affected structure are checked
against oracle interpretations contained in the placeholder. By de-
fault, the generator constructs placeholder oracles for the erroneous
code structures it creates. The compiler tester can overwrite this be-
havior by complementing error generation rules with custom oracle
generation rules.

We evaluate the accuracy of our technique by comparing results
obtained by automated evaluation with results obtained by manual
inspection. The evaluation shows a clear correspondence between
our quality metric and human judgement.

Contributions. This paper provides the following contributions:

• A test input generation technique that generates edit scenar-
ios specified by error generation rules.

• A full automatic technique to measure the quality of recovery
results for generated edit scenarios.

Figure 1: Error generators specify how to generate multiple
erroneous files from a single base file.

Figure 2: Error generation rules create erroneous constructs
by modifying the syntax elements of correct constructs.

The input generation technique is discussed in Section 2, while au-
tomatic quality measurement is the topic of Section 3.

2. TEST GENERATION
To test the quality of an error recovery technique, parser devel-

opers can manually write erroneous input programs containing dif-
ferent kind of syntax errors. However, to draw a conclusion that
is statistically significant, the developer must extend the test set so
that it becomes sufficiently large and diversified. Variation points
are: the error type, the construct that is broken, the syntactic con-
text of the broken construct, and the layout of the input file nearby
the syntax error.

It is quite tedious to manually write a large number of invalid
input programs that cover various instances of a specific error type.
As an alternative, our error generation framework allows the tester
to write a generator that automates the creation of test files that con-
tain syntax errors of the given type. Error generators are composed
from error generation rules and error seeding strategies. The error
generation rules specify how to construct an erroneous fragment
from a syntactically correct fragment; the error seeding strategies
control the application of the error generation rules, e.g., they select
the code constructs that will be broken in the generated test files. A
generator for files with multiple errors can be defined by combining
generators for single error files.

Figure 1 shows the work flow for test case generation imple-
mented by the generation framework. First, the parser constructs
the AST of the base file. Then the generator is applied which con-
structs a large set of ASTs that represent syntactically erroneous
variations of the base program. Finally, the texts of the test files
are reconstructed from these ASTs by a text reconstruction algo-
rithm that preserves the original layout [4]. Error generation rules
may by accident generate modified code fragments that are in fact
syntactically correct. As a sanity check, all generated files that are
accidentally correct are filtered out by parsing them with error re-
covery turned off. The framework is implemented in Stratego [1],
a language based on the paradigm of strategic rewriting.

Error Generation Rules. Error generation rules are applied to
transform abstract syntax terms into string terms that represent syn-
tactically erroneous constructs. The error generation rules operate
on the concrete syntax elements that are associated to the abstract
term, e.g., its child terms plus the associated literals and layout
tokens. Applying modifications to concrete syntax elements rather

323

then token or character streams offers refined control over the effect
of the rule. Typically, error generation rules create syntax errors on
a code construct, while leaving its child constructs intact. As an
example, Figure 2 illustrates the application of an error generation
rule on an if construct. The given rule removes the closing bracket
of the if condition from the list of syntax elements.

The generation framework predefines a set of primitive gener-
ation rules that form the building blocks for more complex rules.
Primitive error generation rules introduce simple errors by apply-
ing insertion, deletion, or replacement operations on the syntax ele-
ments associated with a code structure. For example, the following
generation rule drops the last syntax element of a code construct.

drop-last-element:
syntax-elements -> <init> syntax-elements

By composing primitive generation rules, complex clustered er-
rors can be generated. For example, iterative application of the rule
drop-last-element generates incomplete constructs that miss n
symbols at the suffix.

generate-incompletion(|n) =
repeat(drop-last-element, n)

A second example is provided by nested incomplete construct er-
rors. By applying the generate-incompletion rule twice, first
to the construct and then to the last child construct in the resulting
list, an incomplete construct is created that resides in an incomplete
context, for example “if(i >”.

generate-nested-incompletion(|n,m) =
generate-incompletion(|n);
at-last-elem(generate-incompletion(|m))

Error Seeding Strategies. In principle, error generation rules
could be applied iteratively to all terms in the abstract syntax tree,
generating test files each time that the rule application succeeds.
However, the resulting explosion of test files increases evaluation
time substantially without yielding significant new information about
the quality of the recovery technique. As an alternative to exhaus-
tive application, we let the tester specify an error seeding strategy
that determines to which terms an error generation rule is applied.
Typically, constraints are specified on the sort and/or the size of the
selected terms, and, to put a limit on the size of the test suite, a
maximum is set or a coverage criterion is implemented.

Generators for Common Syntax Errors. The remaining
challenge for test input generation is to implement error genera-
tors that cover common syntax errors. To gain insight into the kind
of syntax errors that occur during interactive editing, we did an em-
pirical research on collected edit data. We inspected 50 randomly
selected files for three different languages, namely: Stratego [1], a
transformation language; SDF [7], a declarative syntax definition
language; and WebDSL [11], a domain-specific language for web
development. We choose these languages since they are consider-
ably different from each other, covering important characteristics
of respectively functional, declarative and imperative languages.

From this preliminary research we conclude that most syntax er-
rors are editing related and generic for different languages. Only
a few errors were related to error prone constructs in a particular
language. We implemented reusable generators for the language
generic edit scenarios. We leave it to an expert of a language to im-
plement custom error generators for language specific errors. Be-
low, we list the error types that we identified during our empirical
research.

• Incomplete constructs, language constructs that miss one or
more symbols at the suffix, e.g. an incomplete for loop
for (x = 1; x.

Figure 3: Automated evaluation of test outputs.

Figure 4: Oracle interpretations for erroneous constructs are
given by placeholder terms (left) or constructed by custom or-
acle generation rules (right).

• Random errors, constructs that contain one or more token
errors, e.g. missing, incorrect or superfluous symbols.

• Scope errors, constructs with missing or superfluous scope
opening or closing symbols.

• String or comment errors, block comments or string literals
that are not properly closed, e.g., /*...*

• Large erroneous regions, severely incorrect code fragments
that cover multiple lines.

• Language specific errors, errors that are specific for a given
language.

• Combined errors, two or more errors from the above men-
tioned categories, randomly distributed over the source file.

3. AUTOMATED QUALITY EVALUATION
An important problem in automated generation of test inputs is

automated checking of the outputs, also known as the oracle prob-
lem. We extend the test case generation framework with a dif-
ferential oracle technique that automates quality measurement of
recovery outputs. Figure 3 shows the work flow for the evalua-
tion framework that includes an oracle generation technique and an
AST compare algorithm which are discussed below.

Oracle AST. The quality of the recovered AST is given by its
closeness to the AST that represents the intended program, also
called the oracle AST. We automate the construction of oracle ASTs
for generated error files. First, we assume that all unaffected code
constructs keep their original interpretation. Thus, the constructed
oracle AST follows the base AST except for the affected terms.
Secondly, we observe that the interpretation of an affected (erro-
neous) construct is often highly speculative and ambiguous. There-
fore, by default, a placeholder oracle is constructed that serves
as a wildcard for the interpretation of the affected term. Unaf-
fected subterms of the affected term are checked against oracle in-
terpretations contained in the placeholder. Figure 4 (left) provides
an example. The placeholder term PLACEHOLDER([Gt("i",5),
FCall("foo", [])])matches each term that has Gt("i",5) and
FCall("foo", []) as subterms.

324

0 2 4 6 8 10 12 14 16 18 20+
0

10

20

30
N

um
be

ro
fF

ile
s

Excellent Good Poor

Figure 5: Correspondence of diff scores with human criteria.

In the given example, a more precise oracle interpretation is
given by If(Gt("i",5), FCall("foo", [])). Compiler testers
can choose to overwrite the default placeholder oracle by imple-
menting an oracle generation rule that specifies how the oracle
term is constructed from the original term. In the given example
(Figure 4, right) the original term itself represents the optimal re-
pair which is the common situation for errors that are constructed
by deletion, insertion or replacement of a single literal token.

Difference Score. We calculate a difference score between the
recovered AST and the oracle AST as a quantitative measurement
of recovery quality. The difference score is calculated by an AST
comparer that extends a change detection algorithm for trees [2]
with support for traversing placeholder terms which do not con-
tribute to the difference score. Oracle terms that do not appear
in the recovered AST contribute the number of associated tokens,
while oracle terms that show up in a wrong syntactic context in-
crease the difference score by one. We base our quantification
on concrete syntax (token count) rather than abstract syntax (term
size), since concrete syntax better reflects human intuition, and be-
cause concrete syntax is independent from the particular abstract
interpretation defined for a language.

Accuracy. The accuracy of a measurement technique indicates
the proximity of measured values to ‘true values’. We evaluated
the accuracy of our quality measurement technique, using the Pen-
nello and DeRemer criteria to determine the ‘true values’. We gen-
erated 135 erroneous Java programs for which we plotted the mea-
sured difference scores against human determined values. Figure 5
shows the results. The figure clearly shows that low difference
scores (smaller or equal to one) correlate to excellent recoveries,
while high difference scores (larger than 20) correlate to poor re-
coveries.

4. RELATED WORK

Compiler Testing. Previous work on automated compiler test-
ing primarily focuses on the generation of valid input programs
that form positive test cases for the parser implementation [5, 12].
A parser for a language must not only accept all valid sentences but
also reject all invalid inputs. Only a few papers address the concern
of negative test cases, a generation based approach is discussed
in [12]. In contrast, the evaluation of error recovery techniques
exclusively targets negative test cases. Furthermore, the gener-
ated negative test cases must be realistic error scenarios instead
of small input fragments that are ‘likely to reveal implementation
errors’. Generation-based techniques construct testcases starting
from a formal specification. It hardly seems possible to formally
specify what a realistic input fragment is that contains realistic syn-
tax errors. For this reason, we consider a mutation based fuzzing
technique more appropriate for the generation of error recovery test
inputs.

Error Recovery Evaluation. Recovery techniques in litera-
ture use testsets that are either manually constructed [3, 8], or com-
posed from practical data [9, 10]. According to our knowledge, test
generation techniques have not yet been applied to recovery eval-
uation. Human criteria [9] and differential oracles [3, 8] form the
state of the art methods to measure the quality of recovery results.
We accomplished to apply a differential oracle technique in a full
automatic setting.

5. CONCLUSION AND FUTURE WORK
This paper introduces a technique for fully automated recovery

evaluation; the technique combines a mutation-based fuzzing tech-
nique that generates realistic test inputs, with an oracle-based eval-
uation technique that measures the quality of the outputs. Auto-
mated evaluation makes it feasible to do a benchmark comparison
between different techniques. As future work we intend to do a
benchmark comparison between different parsers used in common
IDEs. Furthermore, we plan to extend the empirical foundation and
the evaluation of our techniques.

6. REFERENCES
[1] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.

Stratego/XT 0.17. A language and toolset for program
transformation. Science of Computer Programming,
72(1-2):52–70, June 2008.

[2] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically structured
information. SIGMOD Rec., 25:493–504, June 1996.

[3] M. de Jonge, E. Nilsson-Nyman, L. C. L. Kats, and E. Visser.
Natural and flexible error recovery for generated parsers. In
M. van den Brand, D. Gasevic, and J. Gray, editors, SLE,
volume 5969 of LNCS, pages 204–223. Springer, 2009.

[4] M. de Jonge and E. Visser. An algorithm for layout
preservation in refactoring transformations. In U. Assmann
and T. Sloane, editors, SLE, volume 6940 of LNCS, pages
40–59. Springer, 2012.

[5] J. Harm and R. Lämmel. Two-dimensional approximation
coverage. Informatica (Slovenia), 24(3), 2000.

[6] T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an
alternative to tree edit. In CPM ’94, volume 807 of LNCS,
pages 75–86, London, 1994. Springer-Verlag.

[7] B. Luttik and E. Visser. Specification of rewriting strategies.
In M. P. A. Sellink, editor, ASF+SDF 1997, Electronic
Workshops in Computing, Berlin, 1997. Springer-Verlag.

[8] E. Nilsson-Nyman, T. Ekman, and G. Hedin. Practical scope
recovery using bridge parsing. In D. Gasevic, R. Lämmel,
and E. V. Wyk, editors, SLE, volume 5452 of LNCS, pages
95–113. Springer, 2009.

[9] T. J. Pennello and F. DeRemer. A forward move algorithm
for LR error recovery. In POPL, pages 241–254. ACM, 1978.

[10] G. D. Ripley and F. C. Druseikis. A statistical analysis of
syntax errors. Computer Languages, Systems & Structures,
3(4):227–240, 1978.

[11] E. Visser. WebDSL: A case study in domain-specific
language engineering. In R. Lämmel, J. Visser, and
J. Saraiva, editors, GTTSE, volume 5235 of LNCS, pages
291–373, Heidelberg, 2008. Springer.

[12] S. V. Zelenov and S. A. Zelenova. Generation of positive and
negative tests for parsers. Programming and Computer
Software, 31(6):310–320, 2005.

325

