
Generating Database Migrations for Evolving Web Applications

Sander D. Vermolen Guido Wachsmuth Eelco Visser
Delft University of Technology, The Netherlands

{s.d.vermolen, g.h.wachsmuth, e.visser}@tudelft.nl

Abstract
WebDSL is a domain-specific language for the implementation of
dynamic web applications with a rich data model. It provides de-
velopers with object-oriented data modeling concepts but abstracts
over implementation details for persisting application data in rela-
tional databases. When the underlying data model of an application
evolves, persisted application data has to be migrated. While imple-
menting migration at the database level breaks the abstractions pro-
vided by WebDSL, an implementation at the data model level re-
quires to intermingle migration with application code. In this paper,
we present a domain-specific language for the coupled evolution of
data models and application data. It allows to specify data model
evolution as a separate concern at the data model level and can be
compiled to migration code at the database level. Its linguistic in-
tegration with WebDSL enables static checks for evolution validity
and correctness.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; H.2.1 [Database Management]: Logical De-
sign

General Terms Languages

Keywords Evolution, Domain Specific Language, Data Migra-
tion, Web Application

1. Introduction
WebDSL is a domain-specific language for the implementation
of dynamic web applications with a rich data model [16]. It pro-
vides developers with object-oriented data modeling concepts.
These concepts abstract over implementation details for persis-
tence. These details are added in a two-step compilation process. In
the first step, the WebDSL compiler generates application code in
an object-oriented general purpose programming language, which
is Java. To achieve persistence, the generated code relies on the
Hibernate framework. This framework realizes an object-relational
mapping (ORM): Application data is kept in objects at runtime but
is persisted in a relational database. In the second step, the gener-
ated application code is compiled and the persistence framework
generates a relational database schema. When deploying the appli-
cation, a relational database management system (RDBMS) gen-
erates an initial, empty database from this schema. The deployed
application will interact with the RDMBS to store and to retrieve
its data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’11, October 22–23, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0689-8/11/10. . . $10.00

Problem Statement. As any other software, web applications and
their data models evolve. An evolved application has to be re-
compiled and redeployed. During recompilation, the persistence
framework generates a new database schema. Typically, the orig-
inal database no longer complies with the new schema and original
application data cannot be accessed from the evolved application
anymore. During redeployment, the RDBMS instead generates a
new initial database from the new schema. But original application
data is a valuable asset. It needs to be migrated to co-evolve with
the application and its data model.

Implementing migrations at the database level breaks the ab-
stractions provided by WebDSL. Developers have to be aware of
the persistence framework and its ORM to make sure that the mi-
grated database complies with the new schema. They also have to
be aware of the RDBMS to provide details such as character set
definitions, collations, and storage engines.

To avoid breaking abstractions, migrations can be implemented
at the data model level in WebDSL. Since the generated code will
make extensive usage of the ORM, migration does not scale to large
amounts of data and is typically performed lazily. The application
migrates original data only when it needs to access this data. As
a consequence, the original data model has to remain part of the
evolving data model and application code is intermingled with
migration code. Maintenance of data model, application code, and
migration code becomes harder with every new evolution step.

Contribution. In our previous work, we compiled an extensive
catalog of coupled operators for the evolution of object-oriented
data models [8]. These operators couple common evolution steps
at the data model level with their corresponding migrations at the
data level. In this paper, we focus on the implementation of these
operators in Acoda, a tool for the coupled evolution of WebDSL
data models and databases.

Acoda provides a domain-specific language for specifying data
model evolution as a separate concern at the data model level.
Its IDE offers static checks for evolution validity and correctness.
While evolution validity ensures that an evolution can be applied
to the original data model, evolution correctness secures that the
evolution yields the evolved data model.

Acoda implements coupled operators as a mapping from evolu-
tion steps to migration code in SQL. In this paper, we discuss this
mapping for particular operators in detail, including complex oper-
ators that work along the inheritance hierarchy or over references.
Thereby, we distinguish three kinds of migrations. First, schema
modifications change only the database schema. Second, conserva-
tive migrations rearrange data without data loss. Third, lossy mi-
gration supports potential data loss on purpose.

Outline. We briefly introduce WebDSL’s data modeling concepts
and its ORM in the next section. In Section 3, we discuss evolution
specification. In Sections 4 to 6, we address the generation of
migration code for selected operators in detail. We conclude the
paper with a discussion in Section 7.

83

2. WebDSL
WebDSL is a domain-specific language for the development of dy-
namic web applications that integrates data models, user interface
models, actions, validation, access control, and workflow [16]. The
WebDSL compiler verifies the consistency of web applications and
generates complete implementations in Java. In this section, we fo-
cus on WebDSL’s data modeling concepts and the ORM underlying
the generated Java code.

Data modeling. A data model definition in WebDSL features
entity declarations, which comprise a name and a set of properties.
An entity declaration might inherit from another entity declaration,
indicated with : . Each property has a name and a type. We
distinguish two kinds of properties: Value properties, indicated with
:: , and associations, indicated with → . For value properties,
WebDSL supports basic data types such as Bool and String , but
also domain-specific types such as Email, Secret, and WikiText,
which all provide additional functionality. Associations refer either
to entities declared in the data model (single-valued) or to a Set or
List thereof (multi-valued).

Figure 1 (top) shows a data model for a publication management
application similar to Researchr1. It models publications written by
authors and a special type of publication, namely the published vol-
ume. Additionally, users can register and create personal bibliogra-
phies, which are collections of publications.

Object-relational Mapping. WebDSL’s data modeling concepts
abstract over implementation details for persistence. These details
are added by the WebDSL compiler which addresses Hibernate
as a persistence framework. At runtime, application data is kept
in objects which are stored persistently in a relational database.
There is a database table for each hierarchy of entities, named af-
ter the root entity declaration in a hierarchy. Throughout the paper,
we will call these tables hierarchy tables. In the running example,
there will be four tables _User, _Bibliography, _Publication,
and _Author. Each of these tables has at least two columns: id
stores object ids and acts as the primary key of the table while
DISCRIMINATOR is used to distinguish which entity in the hier-
archy is instantiated by an object. Object ids are implemented by
universally unique identifiers (UUIDs) and are therefore database-
wide (and beyond) unique.

Additional columns are added for each value property and for
each single-valued association declared in one of the entities in an
entity hierarchy. Since columns for single-valued associations will
store the ID of a referred object, they act as implicit references.
The implicit references are made explicit by a foreign key to the
id column in the table corresponding to the type of an association.
The RDBMS enforces foreign keys by preventing (or canceling)
database operations that break integrity. The _Bibliography table
will have three columns: id (primary key), DISCRIMINATOR, and
Bibliography_owner (foreign key to id in _User).

Multi-valued associations are stored in separate connection ta-
bles. The names of these tables are composed from the names of
the declaring entity, the association, and the association type. Each
connection table has two columns to store pairs of object ids (refer-
ring and referred object). Both columns are foreign keys to the id
column of the table corresponding to the declaring entity respec-
tively the association type. A multi-valued association can either
be a Set or a List . For sets, we place a primary key on the two
columns, since we may not store a pair of objects twice. For lists, an
additional index column is needed to persist order. Here we place
a primary key on the combination of declaring entity reference
and the index, since there can just be one reference per position

1 Researchr is a web application for finding, collecting, sharing, and review-
ing scientific publications: http://researchr.org.

original data model

entity Author {
name :: String

}

entity User {
email :: Email
password :: Secret
public :: Bool

}

entity Bibliography {
owner → User (not null)
publications → Set<Publication>

}

entity Publication {
key :: String
title :: String
abstract :: WikiText
authors → List<Author>

}

entity PublishedVolume : Publication {
publisher :: String

}

evolved data model

entity Person {
alias → Set<Alias> (not empty)
email :: Email

}

entity Alias {
name :: String (id)

}

entity User : Person {
password :: Secret

}

entity Bibliography {
public :: Bool
owner → User (not null)
publications → Set<Publication>

}

entity Publication {
registrant → User
key :: String
title :: String
abstract :: WikiText
authors → List<Person>

}

entity PublishedVolume : Publication {
editors → List<Person>
publisher :: String

}

evolution model

1 create Publication.registrant→ User;
2 collect Bibliography.public over owner;

3 rename entity Author to Person;
4 create PublishedVolume.editors→ List<Person>;
5 add super Person to User;
6 pull up Person.email;

7 extract entity Alias{name::String} from Person as alias;
8 make Alias.name id;
9 generalize Person.alias to Set;

Figure 1. Running example

in a list. For example, the association Publication.authors
is stored in a connection table Publication_authors_Author
with three columns _Publication_id (foreign key to id in
_Publication), Publicationauthorindex, and authors_id
(foreign key to id in _Author), where the first two columns act as
the primary key.

84

3. Modeling Data Model Evolution
Typically, the evolution of a data model is only implicitly defined
by its original and evolved version. For example, the middle part
of Figure 1 shows an evolved version of the data model from the
top of the figure. In this section, we discuss means to model this
evolution explicitly.

Coupled Operators. Informally, the example evolution follows
three stages: First, bibliography management is extended by al-
lowing users to submit new publications, hence they are linked to
publications as registrant and can now individually set bibli-
ography visibility. This requires adding an association from User
to Publication and a public property to bibliographies. The
latter is collected from the owner of a bibliography as not to lose
the user settings. Second, the system is refactored to support edi-
tors. This requires addition of an editors association, as well as
renaming Author to a more general Person. Consequently, User
can become a sub entity of Person , since they may also be editor
or author of publications. The email of users is then generalized to
be able to store email addresses for editors and authors. Third, the
system is extended to support people (authors, editors, or users) to
have different name aliases. Therefore, a person’s name is extracted
into a new entity, in which names are stored uniquely.

We can model this evolution as a sequence of coupled operator
applications [8, 18]. At the data model level, coupled operators
capture common evolution steps. Thereby, they go beyond simple
creations, changes, and deletions of entities and properties. For
example, the evolution model from the bottom part of Figure 1
includes the collection of a property over an association, the pull-
up of a property into a parent entity, and the extraction of an entity.
Each of these operators couples the evolution step at the data model
level with a corresponding migration. This allows us to compile
evolution models into migration code for the database level.

Linguistic Integration. The language for evolution models is lin-
guistically integrated with WebDSL. It reuses WebDSL’s data mod-
eling concepts and parts of their syntax definition. For example,
constructs for property and entity creation reuse the syntax for
properties and entities. An evolution model includes references to
the original and evolved data model. Static checks ensure evolution
validity and correctness with respect to these data models. For evo-
lution validity, preconditions for operator applications are checked
in the context of the original data model [15]. These preconditions
secure that the evolution can be applied to the original data model.
For evolution correctness, it is checked whether the evolution maps
the original data model to the evolved data model.

Migration. To migrate the original database, each operator ap-
plication in an evolution model is compiled to its corresponding
migration code. Thereby, the compiler follows the same ORM as
the WebDSL compiler, namely Hibernate. This ensures that mi-
grating the original database and generating an initial schema for
the evolved data model will result in the same database schema.
Furthermore, the compiler is aware of the RDMBS and generates
details such as character set definitions, collations, and storage en-
gines2.

In the following sections, we discuss database migration for se-
lected coupled operators. Thereby, we distinguish three kinds of
migrations. Operators such as property and entity creation only re-
quire schema modification. Their corresponding migrations affect
the database schema but not the stored data. We discuss such op-
erators in Section 4. Many other operators such as entity renam-
ing, entity extraction, super addition, or cardinality generalization
allow for conservative data migration. Their corresponding migra-
tions affect both the database schema and the stored data. But the

2 In the examples, we omit these details for readability.

stored data is completely preserved during migration, no data is
lost. We discuss such operators in Section 5. Only few operators
such as property collection or property identification require lossy
migration. Their corresponding migrations may not preserve the
stored data completely. Some data may be lost intentionally during
migration. We discuss such operators in Section 6.

4. Schema Modification
Schema modifying migrations change the database schema, but
leave the persistent data untouched. They generally allow for more
information to be stored and are thereby most commonly needed
while extending application functionality.

4.1 Property Creation
In earlier work [8], we identified two coupled operators for prop-
erty creation: one for value properties and one for associations.
But in WebDSL and its Hibernate configuration, single-valued as-
sociations and multi-valued associations are dealt with differently.
The first is stored inside the containing entity’s table, the second is
stored in its own connection table. Thus, Acoda provides three dif-
ferent coupled operators for property creation: one for value prop-
erties, one for single-valued associations, and one for multi-valued
associations.

When we create a new value property in a data model, the orig-
inal database schema is missing a column for this property. To be
precise, the hierarchy table corresponding to the entity containing
the new property is missing a column. We need to create the miss-
ing column in order to migrate the original database.

For the creation of a new single-valued association, the migra-
tion is similar. Again, the hierarchy table corresponding to the con-
taining entity is missing a column for storing ids of the associated
entity. Additionally, a foreign key needs to be created to enforce
validity. This foreign key needs to point to the id column of the
hierarchy table corresponding to the associated entity.

Example. Acoda generates the following migration for the cre-
ation of the registrant association in the running example:

1 create Publication.registrant→ User;

ALTER TABLE _Publication
ADD COLUMN ‘Publication_registrant‘

VARCHAR(32) default NULL,
ADD CONSTRAINT f_Publication_registrant

FOREIGN KEY ‘f_Publication_registrant‘
(Publication_registrant)

REFERENCES _User (id);

It consists of a single SQL statement altering the _Publication
table. First, it adds a new column Publication_registrant to
store the association. Afterwards, it constrains this column with a
foreign key to id in _User.

In contrast to single-valued references, multi-valued references
are stored in separate connection tables. When we create a new
multi-valued association in a data model, the original database
schema is missing a table for this association. We need to create
this table in order to migrate the original database.

Example. Acoda generates the following migration for the cre-
ation of the editors association:

4 create PublishedVolume.editors→ List<Person>;

CREATE TABLE ‘PublishedVolume_editors_Person‘ (
‘_PublishedVolume_id‘ VARCHAR(32) default NULL,
‘_editors_id‘ VARCHAR(32) default NULL,
‘PublishedVolumeeditorsindex‘ integer,
PRIMARY KEY (‘_PublishedVolume_id‘,

‘PublishedVolumeeditorsindex‘),
INDEX ‘forward_lookup‘

85

(_PublishedVolume_id(14)),
CONSTRAINT ‘f_PublishedVolume_editors_b‘

FOREIGN KEY ‘f_PublishedVolume_editors_b‘
(_PublishedVolume_id)
REFERENCES _Publication (id),

CONSTRAINT ‘f_PublishedVolume_editors_f‘
FOREIGN KEY ‘f_PublishedVolume_editors_f‘
(_editors_id)
REFERENCES _Person (id)

);

It comprises a single statement creating a table connecting
_PublishedVolume to _Person. The table has three columns
to store ids of published volumes, ids of persons, and list indices
since order does matter. For a published volume and an index, the
associated editor needs to be unique. Thus, the published volume
and the index form the primary key of the table. Validity of the two
columns which store ids is ensured by foreign keys. These point
to the id columns in the connected tables. In order to support ef-
ficient use of the connection table, database indices are generated
for the primary key, allowing efficient single editor lookup, and for
the published volumes column, allowing efficient collection of the
complete list of editors for a published volume.

4.2 Entity Creation
Similar to property creation, Acoda provides different coupled op-
erators for the creation of a new entity: one for entities that do not
extend another entity and one for entities that do.

When we create a new entity which does not extend another
entity, the original database is missing a hierarchy table for this
entity and connection tables for its multi-valued associations. We
need to create these tables in order to migrate the original database.
Since we explained the creation of connection tables already in the
previous section, we only focus on the hierarchy table. Following
Hibernate, this table needs to be named like the entity and needs
to provide two columns id and DISCRIMINATOR as well as addi-
tional columns for value properties and single-valued associations.
Columns for single-valued associations need to be constrained by
foreign keys.

When we create a new entity which extends another entity,
the original database is missing columns for its value properties
and single-valued associations and connection tables for its multi-
valued associations. The columns are missing in the hierarchy table
of the extended entity. Thus, the migration is the same as for cre-
ating the properties of the new entity. Creating its value properties
and single-valued associations will add the missing columns while
creating its multi-valued associations will add the missing connec-
tion tables.

Figure 2 presents creation of an entity A:B with single-
and multi-valued features sf 1 .. sf n and mf 1 .. mf m
graphically. The figure above the dashed line shows the database
before migration, the figure below the dashed line after migration.
Each array denotes a table, each cell within an array a column.
An open cell denotes columns which were already present before
modification and remain unaltered. A solid double arrow denotes a
uniqueness key, a dashed double arrow denotes a database index,
and a single arrow denotes a foreign key. A* denotes the root entity
in the hierarchy of entity A, t(a) denotes the target type of an
association a. The id columns are always unique. We therefore omit
the double solid uniqueness arrow on id columns.

5. Conservative Data Migration
Conservative migrations are needed when the domain of an appli-
cation shifts or expands. They change the schema and rearrange
data but do not lose information. Conservative migrations are most
common in practice, yet tedious and error-prone to write manually.

discriminatorid

A_sf n...A_sf 1discriminatorid

mf 1_id[index]A_id

mf m_id[index]A_id

id

id

t(mf 1)*

create entity A : B {
 sf 1 .. sf n
 mf 1 .. mf m }

t(mf m)*

A*

A*

A_mf 1

A_mf m

[]

[]

Figure 2. Database modification for entity creation.

5.1 Entity Renaming
In schema generation, entity names influence table and column
names in hierarchy and connection tables as well as associated
foreign keys. When an entity is renamed, these names need to be
updated and foreign keys need to be recreated. More specifically,
renaming entity A requires the following schema modifications:

1. Drop foreign keys for single- and multi-valued associations in A

2. Drop foreign keys for single- and multi-valued associations of type
A

3. Rename the hierarchy table for A if A=A*
4. Rename columns for value properties and single-valued associations

in A

5. Rename connection tables for multi-valued associations in A

6. Rename columns for multi-valued associations in A

7. Rename columns for multi-valued associations of type A

8. Create foreign keys for single- and multi-valued associations in A

9. Create foreign keys for single- and multi-valued associations of type
A

However, entity names are also used as discriminator, distinguish-
ing between different entities in a hierarchy. An entity rename
therefore needs to migrate the data inside the hierarchy table for
A, by replacing the old entity name in the DISCRIMINATOR column
by the new entity name.

Example. Acoda generates the following migration for renaming
Author to Person :

3 rename entity Author to Person;

ALTER TABLE Publication_authors_Author
DROP FOREIGN KEY ‘f_Publication_authors_f‘;

ALTER TABLE _Author
RENAME _Person;

ALTER TABLE Publication_authors_Author
RENAME Publication_authors_Person,
ADD CONSTRAINT ‘f_Publication_authors_f‘

FOREIGN KEY ‘f_Publication_authors_f‘ (_authors_id)
REFERENCES _Person (id),

UPDATE _Person
SET DISCRIMINATOR = "Person"
WHERE DISCRIMINATOR = "Author";

First, the foreign key for the Publication.authors associa-
tion is dropped, after which the hierarchy table _Author can be
renamed. Next, the connection table for the association is renamed
and the dropped foreign key is recreated. Finally, the object dis-
criminators are updated.

86

a1 a2

discriminatorid add super A to BA*

bm+2b2 ...b1 b3

col m...col 1discriminatoridB

b1

discriminator

bm+2

...

a1

...b3

col m

a2

col 1id

b2

A*

Figure 3. Database modification for super type addition.

5.2 Super Addition
When the original application models two inheritance-unrelated
entities, separate tables are used to store the inheritance trees of
both. When the application evolves by adding a super entity joining
the two inheritance trees, the target application only uses a single
table to store both entities. To support the new application, the
original tables and associated data needs to be merged. The schema
modifications are presented graphically in Figure 3. The migration
of adding super entity A to entity B comprises the following steps:

1. Expand the table for A* by all single-valued properties in the
inheritance tree of B (inh(B))

2. Create foreign keys for outward single-valued associations in
inh(B)

3. Copy single-valued data from the old table for B to the table for A*
4. Drop foreign keys for outward (multi-valued and single-valued) as-

sociations in inh(B)

5. Create foreign keys for outward multi-valued associations in
inh(B)

6. Drop foreign keys for inward associations to inh(B)

7. Create foreign keys for inward associations to inh(B)

8. Drop the old table for B

Step 1 creates the new space to store data for B and its sub
entities inside the table, which was originally only used for A* and
its sub entities. Step 2 creates foreign keys pointing away from the
table of A* . Step 3 prevents any loss of data. Steps 5 and 7 create
foreign keys pointing to the table of A* , which work on the copied
data. Steps 4 and 6 drop all foreign keys, that point to the table for
B , to prevent breaking the database integrity. Finally, step 8 deletes
the old data. The order of steps is crucial, it targets to maximize the
number of constraints at any point in migration: Foreign keys for
outward single-valued associations are added before copying data,
since they point away from the table for A* and thereby also hold on
an incomplete (or empty) set of B records. Foreign keys for outward
multi-valued associations and inward associations are created after
copying, since they point to the table for A* and therefore require
a complete data set. The foreign keys are dropped before the data
is dropped to prevent them from breaking and the foreign keys are
dropped before they are recreated to prevent name clashes. Note
that except for their foreign keys, any connection table associated
to inh(B) remains unaltered.

Example. In the running example, Person becomes super entity
of User . Following the scheme outlined above: User has two
single-valued properties email and password , which are added

to the Person table in step 1. Both these properties are attributes,
hence step 2 can be omitted. Next, the user data is copied from
the User table to the Person table in step 3. Step 4 can again
be omitted. User has one inward association registrant from
Publication, whose new foreign key is added in step 5 and whose
old foreign key is dropped in step 7. Step 6 can again be omitted
and step 8 drops the old user data. The steps are formalized in the
following migration:

5 add super Person to User;

ALTER TABLE _Person
ADD COLUMN ‘User_email‘ VARCHAR(255) DEFAULT ’’;
ADD COLUMN ‘User_password‘ VARCHAR(255) DEFAULT ’’;

INSERT INTO _Person
(id,DISCRIMINATOR, version_opt_lock,

User_email, User_password)
SELECT id,DISCRIMINATOR,

version_opt_lock,_email,_password
FROM _User;

ALTER TABLE _Publication
DROP FOREIGN KEY ‘f_Publication_registrant‘;

ALTER TABLE _Publication
ADD CONSTRAINT ‘f_Publication_registrant‘
FOREIGN KEY ‘f_Publication_registrant‘
(Publication_registrant)
REFERENCES _Person (id);

DROP TABLE _User;

5.3 Entity Extraction
To enrich a data model, an entity may need to be extracted from
another entity. During entity extraction, a new entity is created
using some or all of the properties of an existing source entity.
A single-valued association is created to link objects of the two
entities. An example entity extraction can be found in the running
example, where Alias is extracted from Person , using a
new association alias . We distinguish the following steps in a
migration for extracting entity B from A as a :

1. Adapt the schema to store B

2. Add a column for a to the table for A*
3. Generate new identifiers in the column for a
4. Copy a as id and other single-valued columns in B from the table for

A*

5. Create a foreign key for a
6. Drop the old columns in the table for A*
7. Move the data for multi-valued properties in B and update their ids

using the mapping provided by a

Step 1 comprises a migration for creating an entity, as discussed
in Section 4.2. Step 2 adds a column, but leaves out its foreign key.
Step 3 generates new ids, which can be sequentially numbered,
or as in our case UUIDs. Step 4 then performs the extraction
for all single-valued data, by copying their columns including the
newly generated ids and a discriminator (’B’) to the new table.
As the identifier duplication now validates the foreign key, it can
be created in step 5. Step 6 then drops the old single-valued data
from the table for A* . Finally, step 7 moves the multi-valued data
to new connection tables, which were created in step 1. This data
references A objects, whereas they should now be referencing B
objects, therefore there links need to be updated using the mapping
specified in the table for A* (id, A_a) . After moving the multi-
valued data, the old connection tables are dropped. Note that step 4
moves each property across association a to B . We could therefore
have reused the migration generation for moving properties, yet this
would yield an inefficient migration. Copying all data in one pass
over the table for A* is more efficient then separate passes for each
of the single-valued properties in B .

Figure 4 shows the database before and after migration. The
data set identifiers are generated (step 3 above) and the data set for

87

am+2

A_sf m

...

...

a1 a3

discriminator A_sf 1id

a2

extract entity
B{ sf 1 .. sf m
 mf 1 .. mf n
}
from A as a

A*

ids

A_a

a1

discriminatorid

a2

A*

am+2

B_sf m

...

...

ids a3

discriminator B_sf 1id

"B"

B*

ids generated

[mf q 2]mf q 1 mf q 3

mf q_id[index]A_id id t(mf q)*A_mf q

for all q in 1 .. n

[mf q 2]A(mf q 1).A_a mf q 3

mf q_id[index]B_id id t(mf q)*A_mf q

for all q in 1 .. n

Figure 4. Database modification for entity extraction.

B_id is obtained by applying the mapping from A objects to B
objects (step 7).

Example. In the running example, we extract entity Alias and
its name property from Person , while creating an association
alias. To adapt the database, we generate the migration shown
below. Step 7 above is not represented, since Alias has no multi-
valued properties.

7 extract entity Alias{name::String} from Person as alias;

CREATE TABLE IF NOT EXISTS ‘_Alias‘ (
‘DISCRIMINATOR‘ VARCHAR(255) default ’’,
‘id‘ VARCHAR(32) default NULL,
‘Alias_name‘ VARCHAR(255) default ’’,
PRIMARY KEY (‘id‘)

);
ALTER TABLE _Person

ADD COLUMN ‘Person_alias‘ VARCHAR(32)
default NULL;

UPDATE _Person
SET Person_alias = UUID();

INSERT INTO _Alias
SELECT "Alias", Person_alias, Person_name
FROM _Person;

ALTER TABLE _Person
ADD CONSTRAINT ‘f_Person_alias‘
FOREIGN KEY ‘f_Person_alias‘ (Person_alias)
REFERENCES _Alias (id);

ALTER TABLE _Person
DROP COLUMN Person_name;

5.4 Maximum Cardinality Generalization
During the lifetime of an application, attributes often get general-
ized to expand the application’s functionality. One type of property
generalization is increasing its maximum cardinality. Any multi-
valued cardinality uses the same database structure, its exact num-
ber is irrelevant. However, a single-valued association is repre-
sented as a column, whereas a multi-valued association as a con-
nection table. In the running example, a person’s alias is stored

within the Person table before step 7 and stored in a connec-
tion table afterwards. To support such generalization, we need to
generate a migration, which first creates the connection table, then
moves the data from the main table to the connection table and sub-
sequently drops the old column.

Example. For generalizing the maximum alias cardinality in
the running example, we generate the migration below. The first
statement creates a connection table as discussed in Section 4.1.
The second statement inserts the old data into the new connection
table. The last two statements drop the old column by first dropping
the foreign key and then dropping the column itself.

9 generalize Person.alias to Set;

CREATE TABLE IF NOT EXISTS ‘Person_alias_Alias‘ (
‘_Person_id‘ VARCHAR(32)default NULL,
‘_alias_id‘ VARCHAR(32)default NULL,
INDEX ‘forward_lookup‘ (_Person_id(14)),
CONSTRAINT ‘f_Person_alias_b‘

FOREIGN KEY ‘f_Person_alias_b‘ (_Person_id)
REFERENCES _Person (id),

CONSTRAINT ‘f_Person_alias_f‘
FOREIGN KEY ‘f_Person_alias_f‘ (_alias_id)
REFERENCES _Alias (id)

);
INSERT INTO Person_alias_Alias

SELECT id, Person_alias
FROM _Person
WHERE Person_alias IS NOT NULL;

ALTER TABLE _Person
DROP FOREIGN KEY f_Person_alias;

ALTER TABLE _Person
DROP Person_alias;

5.5 Property Pull-Up
For pulling up a property, Acoda provides different migrations
for value properties, single-valued associations, and multi-valued
associations. Value properties as well as single-valued associations
are stored inside the inheritance hierarchy table. A property is
pulled up from each of the sibling entities inside the hierarchy.
The pulled up property is stored in one database column. During
migration, the values for the different sibling columns need to
be combined. This is achieved by creating the new column A_f,
copying the data sets of each of the sibling properties separately
and dropping the sibling properties afterwards. Figure 5 presents
single-valued pull up. The pulled up data (a12 to an2) is merged
to form a new column A_f. When associations are pulled up, the
old foreign keys are dropped (arrows in figure) and a single foreign
key is created along with the new column A_f.

Example. In the running example, email is pulled up from
User to Person . Email is a single-valued property and User
has no sibling entities. Thus, for the example, we need to merge
a single column with no foreign key, which amounts to creating a
new column, copying the data and dropping the old column:

6 pull up Person.email;

ALTER TABLE _Person
ADD COLUMN ‘Person_email‘
VARCHAR(255) DEFAULT ’’;

UPDATE _Person
SET Person_email = User_email
WHERE DISCRIMINATOR=’User’;

ALTER TABLE _Person
DROP COLUMN ‘User_email‘;

When pulling up a multi-valued association, the set of sibling
associations is stored in a collection of connection tables. These
need to be merged into a new table which has column names and
foreign keys adapted to the new containing type. In contrast to
single-valued associations, merging of multi-valued associations
comprises a union of the sibling data sets and can thus be done
in one SQL statement.

88

...

A1_sf

an2

...

a11

discriminator

a31

...

"A1"

An_sf

a12

"A3"

id

...

pull up A.sf

A1 : A {..sf..}
 .
 .
 .
An : A {..sf..}

A*

"A3"a31 an2

...... ...

a12

A_f

a11

discriminatorid

"A1"

A*

id t(sf)*

id t(sf)*

Figure 5. Database modification for single-valued property pull
up.

6. Lossy Migration
Although data loss is generally not desirable, when correcting de-
sign flaws it can often not be avoided. Additionally, in many cases a
migration may in theory potentially cause data loss, yet in practice
for many databases this will not actually be the case.

6.1 Property Collection
It is common for properties to be repositioned during the life-span
of an application. They can be repositioned across an inheritance
relation (e.g. pull up), but can also be repositioned across an
association. In WebDSL, associations are directed. When reposi-
tioning a property in the direction of the association, we speak of
moving a property, when repositioning opposite to the association
direction, we speak of collecting a property. When a property is
repositioned across an association, we call the association a bridge.

There are two main reasons for collecting properties: First, the
application may use numerous dereferences to access a property, in
which case the dereference can be made permanent by collecting
the property. Second, the property might no longer logically belong
to the referred object but to the referring object. This is the case in
our running example: We want to distinguish for each bibliography
if it is public or not. In the original data model, the distinction is
made only on a per user basis. Thus, the corresponding property
public needs to be collected from User to Bibliography, using
owner as a bridge.

Property collection may cause loss of data, since the bridge may
not be surjective. There may be users who have set their public field
but do not have a bibliography. To adapt a database to a collected
single-valued property f in A from B across single-valued
association bridge 3, we first create the new column to store f.
Next, we join the tables for A* and B* (we compute their cross
product) and filter the result on records where the bridge holds
(A.bridge = B.id) . Then we copy the old column for f to
the new column for f in the cross product result. Finally we drop
the old column for f . If f is an association, its new foreign key
needs to be created along with creating its new column and its old
foreign key needs to be dropped before dropping the old column.

3 Note that A and B could be the same type

a1 a3a2

A_bridgediscr.id

collect A.f over bridge

... bridge -> B ...

A*

b2b1 b3

B_fdiscr.idB*

A_f

a3.b3a1 a3a2

A_bridgediscr.idA*

b2b1

discr.idB*

A*
x
B*

discr. A_bridge A_fid B_fdiscr.id

Figure 6. Database modification for property collection.

Note that the database index on the (primary) id column of the table
for B ensures that the table join can be computed efficiently.

Figure 6 shows the process graphically, in which the middle
stage represents the intermediate signature during update. During
migration, data is typically duplicated: A user can have multiple
bibliographies, each of which gets the same public value.

Example. To collect public from User to Bibliography
in our running example, we generate the migration below. The first
and last statement create and delete columns to store the public
property. The second statement copies (and duplicates) the infor-
mation by updating the Bibliography and User table joined
together using owner as criterium.

2 collect Bibliography.public over owner;

ALTER TABLE _Bibliography
ADD COLUMN ‘Bibliography_public‘ BIT(1)
DEFAULT FALSE;

UPDATE _Bibliography target, _User source
SET target.Bibliography_public = source.User_public
WHERE target.Bibliography_owner = source.id;

ALTER TABLE _User
DROP User_public;

There are different migrations for collecting multi-valued prop-
erties and for collecting properties across a multi-valued bridge. In
both cases, the migration is extended by including connection ta-
bles. When collecting a property across a multi-valued bridge, we
need to extend the join above by the connection table representing
the bridge. When collecting a multi-valued property, the property is
represented as a connection table and we can thereby make a new
connection table by rewriting the connection table’s reference to B
into a reference to A , using the bridge. To apply the rewriting effi-
ciently, a database index on the bridge needs to be generated first.

6.2 Property Identification
When a property is kept unique by the application, yet is not
modeled as such, it can be made unique to ensure correctness of the
application logic. Also, when data is stored redundantly, it can be
compacted by enforcing uniqueness of redundant properties. The
latter is the case in the running example, where multiple aliases
with the same name exist after entity extraction. By making an
alias’ name unique, only one object would be needed per name.

Although the schema generated for the new application would
match the original schema, the application logic assumes property
uniqueness, whereas this is not guaranteed by the database. The
original database may contain duplicate values. Migration needs

89

a3

A_f

a1

discr.id

a2

make A.f id

A*

r q

Ref q_ref qR q*

for all references
Ref q.ref q -> A

m1

targetsource

m2

A_
merge

a3

A_f

a1

discr.id

a2

A*
r q

Ref q_ref qR q*

for all references
Ref 1.ref1 -> A

A_f

distinct m2

discr.idA*

A_merge(r q).target

Ref q_ref qR q*

for all references
Ref 1.ref1 -> A

Figure 7. Database modification for attribute identification.

to resolve these duplicates as to ensure uniqueness. There are two
approaches to enforcing uniqueness: Either the identifying values
are adapted to be unique, yet it is hard to provide a decent strategy
to do so and in practice this is rarely desirable. Or the objects which
contain duplicate values are merged. We use the latter. It may merge
objects, which are not exactly the same, in which case information
is lost.

Merging objects along an identifying property comprises two
tasks: the objects need to be merged and all associations to these
objects need to be updated to point to the merged objects. Both
tasks make extensive use of a mapping from original objects to
merged objects. As this mapping is computationally complex to
derive, we compute it once and reuse the result. The schematical
changes for making property A.f an identifier are shown in
Figure 7. The top-most part shows the table for A and associations
to this table, which may both be from single-valued associations
(columns) as well as multi-valued associations (connection tables).
The middle part shows the computed mapping from A object ids
(source) to merged A object ids (target). Only the target column
has a foreign key to A*. At the start of migration the source column
also references A ids, yet after merge, source may point to no
longer existing, merged objects. The bottom part shows the schema
after migration.

For making Alias.name an identifier (step 8 in the running
example), Acoda generates the following migration:

8 make Alias.name id;

CREATE TABLE Alias_merge
(INDEX forward_lookup (source),

INDEX reverse_lookup (target))
CONSTRAINT ‘f_Alias_merge‘

FOREIGN KEY ‘f_Alias_merge‘
(target)
REFERENCES _Alias (id)

SELECT original.id AS source, target
FROM

_Alias AS original,
(SELECT min(id) AS target, Alias_name

FROM _Alias
GROUP BY Alias_name) AS merged

WHERE original.Alias_name = merged.Alias_name;
UPDATE _Person AS ref, Alias_merge AS map

SET ref.Person_alias = map.target
WHERE ref.Person_alias = map.source;

DELETE FROM _Alias
WHERE NOT EXISTS
(SELECT *

FROM Alias_merge AS map
WHERE map.target = id);

ALTER TABLE _Alias
ADD CONSTRAINT ‘Alias_name_unique‘
UNIQUE (_name);

DROP TABLE MergeMap_Alias;

The first statement computes and stores the mapping form original
aliases to merged aliases. It uses two indices for efficient lookup:
a forward index to rewrite the associations and a backward index
to update the alias table. The second statement updates the alias
association from Person , which at this point in migration is still
single-valued. The update joins the Person table and the map
to update all associations efficiently. The third statement drops the
old and redundant aliases, which can now safely be removed, since
they are no longer in use. The fourth statement enforces uniqueness
and the final statement removes the merge map.

7. Discussion
Related Work. Migration generation is common in software de-
velopment. Evolving data models require data migration, evolv-
ing DTDs require XML migration, and evolving schema require
database migration. Furthermore, migration is not restricted to data
modeling. It also occurs where meta-models evolve, where domain-
specific languages evolve [13], and where grammars evolve [14].
The coupled transformation problem is ubiquitous [11]. In this sec-
tion, we relate our work to existing work on data model evolution
and to work on coupled evolution in general.

Ruby on Rails offers support for migration of databases along
an evolving web application4. The web applications use an ORM
to persist data in a relational database. They offer support for ver-
sioning different databases running different versions of the same
application. In contrast to our work, the Ruby on Rails migration
support requires the developer to define database migrations him-
self in terms of the relational database. Ruby on Rails offers a set
of SQL-like methods to alter a database, such as create_table,
add_column and remove_index. They do not offer an evolu-
tion language at the application abstraction level.

In the area of data model evolution, most work focuses on evolv-
ing schema and migrating databases [2, 5, 6]. Schema describe
structure of data storage, primarily focusing on storage techniques
to improve query performance. Evolving schema requires the de-
veloper to be concerned with database implementation details. In
our work, we bridge the ORM to allow the developer to define evo-
lution in the application domain and abstract away from database
details. From the application-level evolution specification, we gen-
erate schema evolution definitions (in SQL). We rely on the pre-
vious work on schema evolution to efficiently map the generated
schema evolution onto a database migration. On the one hand, this
allows the developer to reason in terms of application logic instead
of database techniques. On the other hand, it allows us to intro-
duce more advanced concepts into evolution specifications, such as
inheritance, cardinalities, and associations.

Visser et al. formalize the more general coupled transforma-
tions [1, 4, 17]: Not only conforming artifacts are considered (such
as a database or XML document), also dependent artifact transfor-
mations are formalized (such as query and constraint migration).
The formalization makes use of data refinement theory and uses
Haskell for presentation. Visser et al. do not offer concrete mi-
grations in addition to the presented formalization. Although they

4 http://guides.rubyonrails.org/migrations.html

90

Figure 8. Screenshot of the Acoda Eclipse plugin. The left-most column shows the regular Eclipse project tree. The top-left editor displays
a WebDSL data model. The top-right editor shows the evolution specification. The bottom editor shows the generated SQL migration.

consider flattening hierarchies and present a formalization of such,
they do not consider inheritance, or a complete ORM. In their con-
cluding remarks, they point out that inheritance would be useful to
include, to extend the scope to object-oriented data models.

Lämmel and Lohmann discuss migration of XML data along
evolving DTDs [12]. They formalize the migration concepts and
distinguish two groups of evolution: refactorings and structure-
extending and -reducing evolutions. They discuss higher-level evo-
lutions, such as folding and generalization. Lämmel and Lohmann
do not offer a language for describing evolution.

Similar to the application models considered in our work, meta-
models are defined in terms of high-level concepts, such as in-
heritance and cardinalities. Meta-model evolution languages cover
a high level of abstraction and are similar to evolution steps on
object-oriented data models [3, 7, 9, 18]. We therefore reused the
evolution steps defined on meta-models, which are outlined in pre-
vious work [8]. In contrast to our work, in meta-modeling, there is
a close relationship between the data set structure and the data defi-
nition: models closely follow the structure defined in their meta-
model. The relational structure of a RDBMS, does not closely
follow the object-oriented structure of an application-level model.
Thus, where model migration does not need to cover the gap be-
tween defined structure and implemented structure, our work cov-
ers the mapping between object domain and relational domain: the
ORM.

Implementation. The presented evolution modeling language is
implemented as a part of Acoda5. To seamlessly integrate into reg-
ular development, Acoda offers an Eclipse plugin developed us-
ing Spoofax/IMP [10]. It operates in cooperation with the (already
available) WebDSL plugin, which provides WebDSL application
editing and compilation services. Acoda offers additional function-
ality around evolving WebDSL data models, such as comparison of
original and evolved data model to yield an evolution model [15];
editor support for editing evolution models (such as syntax high-
lighting, instant error marking and content completion); generation
of SQL migration code; and application of migrations to a database.
The plugin can be used in the context of agile development, in
which it supports a short development - migration - deployment
- testing loop. For migration of production databases, Acoda also
offers a stand alone version, which can be run on-site or remotely.

Figure 8 shows a screenshot of the plugin. The left-most column
shows the regular Eclipse project tree. The top-left editor displays a
WebDSL data model (the running example). This editor is provided
by the WebDSL plugin. The top-right editor shows the evolution
specification used throughout the paper, with a small typo to show
evolution validity checking and corresponding error marking. This
editor is provided by the Acoda plugin. The bottom editor shows
the SQL migration generated by the plugin. Although this migra-
tion can be viewed and adapted by the developer, general practice
is to apply the evolution specification directly, without examining

5 http://swerl.tudelft.nl/bin/view/Acoda

91

SQL code. However, this still generates the SQL migration inter-
nally, which is then applied to the database.

Changing Persistence Implementation. WebDSL abstracts over
implementation details for persistence. The presented migration
generation is aligned to Hibernate. But the WebDSL compiler
might change some of the parameters for Hibernate’s ORM or
might even address another persistence framework. Such changes
would be transparent to evolution models, since Acoda abstracts
over implementation details for migration and preserves WebDSL’s
data modeling abstractions. The Acoda compiler needs to re-
flect these changes and has to address the same ORM as the
WebDSL compiler. These changes primarily amount to naming
differences (of columns, tables, and keys) and a different type of
inheritance representation (e.g. using separate tables for each entity,
instead of hierarchy tables). To cope with naming differences, the
naming in Acoda is pluggable and can be replaced by another nam-
ing scheme. To cope with a different inheritance representation,
migration generations dealing with inheritance (e.g. the presented
sub entity creation, property pull-up, and super addition) need to
be adapted. Considering inheritance flattening is the more complex
variant, adaptation will generally simplify migration generation.

Performance & Uptime. Databases serve live web applications.
Database migration may cause application downtime. Good per-
formance of migration is important to limit downtime.

Acoda constructs migrations from database operations. Effi-
ciency of their implementation depends on the used RDBMS. Nev-
ertheless, we optimize the usage of database operations at two lev-
els: First, we combine evolution operators at the data model level to
form more complex operators with a more efficient migration at the
database level. For example, a class creation and a feature addition
can be combined into a single class creation. Second, we combine
SQL operations in the generated migrations at the database level.
Acoda compiles a sequence of evolution operators into a sequence
of SQL statement sequences. These sequences may overlap. For
example, two changes on a table (e.g. a rename and a column addi-
tion) may be generated for different evolution operators, yet can be
combined into a single ALTER TABLE statement, thus significantly
improving performance. The two kinds of optimizations target to
generate the most efficient migration script.

Furthermore, the generated migrations attempt to shorten the
time in which the database is inaccessible as much as possible.
For example, the super addition postpones data deletion to the last
step, even though it could have been applied earlier. This allows the
database to stay online in read-only mode while the more computa-
tion intensive steps are executed (such as copying data). Addition-
ally, migrations generally only target a part of the database, remain-
ing application data stays accessible (both readable and writable).
In practice however, most migrations are short and can be executed
while the application is updated. They cause little or no additional
downtime on regular-sized (WebDSL) databases.

Acknowledgments
This research was supported by NWO/JACQUARD project 638.
001.610, MoDSE: Model-Driven Software Evolution.

References
[1] T. Alves, P. Silva, and J. Visser. Constraint-aware schema transforma-

tion. In Ninth International Workshop on Rule-Based Programming,

2008.

[2] P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Coupled schema
transformation and data conversion for XML and SQL. In Practical
Aspects of Declarative Languages (PADL 2007), volume 4354 of
LNCS, pages 290–304. Springer, 2007.

[3] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio. Automating
co-evolution in model-driven engineering. In Enterprise Distributed
Object Computing Conference (EDOC 2008). IEEE, 2008.

[4] A. Cunha, J. Oliveira, and J. Visser. Type-safe two-level data trans-
formation. In Formal Methods Europe (FME 2006), volume 4085 of
LNCS, pages 284–299. Springer, 2006.

[5] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In International conference on management of data
(SIGMOD 1993), pages 157–166, New York, NY, USA, 1993. ACM.

[6] J.-L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon. Schema trans-
formation techniques for database reverse engineering. In Proceedings
of the 12th Intl. Conf. on the Entity-Relationship Approach (ER 1993),
pages 364–375, London, UK, 1994. Springer-Verlag.

[7] M. Herrmannsdoerfer, S. Benz, and E. Juergens. COPE - automating
coupled evolution of metamodels and models. In ECOOP 2009 -
Object-Oriented Programming. Springer, 2009.

[8] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth. An ex-
tensive catalog of operators for the coupled evolution of metamodels
and models. In Software Language Engineering, Third International
Conference (SLE 2010), LNCS. Springer, 2010.

[9] J. Hoßler, M. Soden, and H. Eichler. Coevolution of models, meta-
models and transformations. In Models and Human Reasoning, pages
129–154, Berlin, 2005. Wissenschaft und Technik Verlag.

[10] L. C. L. Kats, K. T. Kalleberg, and E. Visser. Domain-specific lan-
guages for composable editor plugins. In Proceedings of the Ninth
Workshop on Language Descriptions, Tools, and Applications (LDTA
2009), Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, April 2009.

[11] R. Lämmel. Coupled software transformations (extended abstract). In
First International Workshop on Software Evolution Transformations,
Nov. 2004.

[12] R. Lämmel and W. Lohmann. Format evolution. In RETIS 01: Proc.
7th International Conference on Reverse Engineering for Information
Systems, volume 155 of books@ocg.at, pages 113–134. OCG, 2001.

[13] M. Pizka and E. Juergens. Tool supported multi level language evolu-
tion. In In Proceedings of SVM’07: Software and Services Variability
Management Workshop Concepts, Models and Tools, 2007.

[14] S. D. Vermolen and E. Visser. Heterogeneous coupled evolution
of software languages. In Model Driven Engineering Languages
and Systems (Models 2008), volume 5301 of LNCS, pages 630–644.
Springer, 2008.

[15] S. D. Vermolen, G. Wachsmuth, and E. Visser. Reconstructing com-
plex metamodel evolution. In Software Language Engineering, Fourth
International Conference, SLE 2011, Braga, Portugal, Revised Se-
lected Papers, Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2012. To Appear.

[16] E. Visser. WebDSL: A case study in domain-specific language engi-
neering. In Generative and Transformational Techniques in Software
Engineering (GTTSE 2007), volume 5235 of LNCS. Springer, 2008.

[17] J. Visser. Coupled transformation of schemas, documents, queries, and
constraints. Electron. Notes Theor. Comput. Sci., 200(3):3–23, 2008.
ISSN 1571-0661.

[18] G. Wachsmuth. Metamodel adaptation and model co-adaptation.
In ECOOP 2007 - Object-Oriented Programming, volume 4609 of
LNCS, pages 600–624. Springer Berlin / Heidelberg, 2007.

92

