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Abstract
The reliability of compilers, interpreters, and development
environments for programming languages is essential for ef-
fective software development and maintenance. They are of-
ten tested only as an afterthought. Languages with a smaller
scope, such as domain-specific languages, often remain
untested. General-purpose testing techniques and test case
generation methods fall short in providing a low-threshold
solution for test-driven language development. In this paper
we introduce the notion of a language-parametric testing
language (LPTL) that provides a reusable, generic basis for
declaratively specifying language definition tests. We inte-
grate the syntax, semantics, and editor services of a language
under test into the LPTL for writing test inputs. This paper
describes the design of an LPTL and the tool support pro-
vided for it, shows use cases using examples, and describes
our implementation in the form of the Spoofax testing lan-
guage.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—Testing Tools; D.2.3
[Software Engineering]: Coding Tools and Techniques;
D.2.6 [Software Engineering]: Interactive Environments

General Terms Languages, Reliability

Keywords Testing, Test-Driven Development, Lan-
guage Engineering, Grammarware, Language Workbench,
Domain-Specific Language, Language Embedding, Com-
pilers, Parsers
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1. Introduction
Software languages provide linguistic abstractions for a do-
main of computation. Tool support provided by compil-
ers, interpreters, and integrated development environments
(IDEs), allows developers to reason at a certain level of
abstraction, reducing the accidental complexity involved
in software development (e.g., machine-specific calling
conventions and explicit memory management). Domain-
specific languages (DSLs) further increase expressivity by
restricting the scope to a particular application domain.
They increase developer productivity by providing domain-
specific notation, analysis, verification, and optimization.

With their key role in software development, the correct
implementation of languages is fundamental to the reliability
of software developed with a language. Errors in compilers,
interpreters, and IDEs for a language can lead to incorrect
execution of correct programs, error messages about correct
programs, or a lack of error messages for incorrect programs.
Erroneous or incomplete language implementations can also
hinder understanding and maintenance of software.

Testing is one of the most important tools for software
quality control and inspires confidence in software [1]. Tests
can be used as a basis for an agile, iterative development pro-
cess by applying test-driven development (TDD) [1], they
unambiguously communicate requirements, and they avoid
regressions that may occur when new features are introduced
or as an application is refactored [2, 31].

Scripts for automated testing and general-purpose testing
tools such as the xUnit family of frameworks [19] have been
successfully applied to implementations of general-purpose
languages [16, 38] and DSLs [18, 33]. With the successes
and challenges of creating such test suites by hand, there
has been considerable research into automatic generation
of compiler test suites [3, 27]. These techniques provide an
effective solution for thorough black-box testing of complete
compilers, by using annotated grammars to generate input
programs.

Despite extensive practical and research experience in
testing and test generation for languages, rather less atten-
tion has been paid to supporting language engineers in writ-
ing tests, and to applying TDD with tools specific to the do-
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main of language engineering. General-purpose testing tech-
niques, as supported with xUnit and testing scripts, require
significant investment in infrastructure to cover test cases re-
lated to syntax, static semantics, and editor services, spe-
cific for the tested language. They also use isolated test pro-
grams to test particular language aspects, requiring a certain
amount of boilerplate code with each test program (e.g., im-
port headers), and require users to manually code how to
execute the test (parse/compile/run/etc.) and how to evaluate
the result and compare it to an expectation. Tool support for
writing test cases and specifying test conditions is lacking,
particularly for negative test cases where errors are expected.
Test generation techniques are an effective complementary
technique for stress testing complete compiler implementa-
tions, but are less effective during the development of a new
language definition.

In this paper, we present a novel approach to language
definition testing by introducing the notion of a language-
parametric testing language (LPTL). This language provides
a reusable, generic basis for declaratively specifying lan-
guage definition tests. It can be instantiated for a specific
language under test through language embedding: we inte-
grate the syntax, semantics, and editor services of a language
under test into the LPTL for writing test inputs.

For the generic basis of the LPTL, we provide general
constructs to configure test modules and to declaratively
specify test conditions. Based on the observable behavior
of languages implementations, we selected an open-ended
set of test condition specification constructs. These form the
heart of the testing language, and support writing tests for
language syntax, static semantics, editor services, generated
code, and dynamic semantics.

To support language engineers in writing and understand-
ing tests, we show how full language-specific IDE support
can be provided for writing test cases. The instantiated LPTL
provides editor services such as syntax highlighting, syntax
and semantic error marking, and content completion, based
on the definition of the language under test.

Using an LPTL significantly reduces the threshold for
language testing, which is important because such a thresh-
old is often a reason for developers to forgo testing [15].
First, by providing a reusable infrastructure for language
test specifications that facilitates test execution, analysis,
maintenance, and understanding. Second, by providing full
language-specific IDE support for writing tests.

The contributions of this paper are as follows.
– The design of a generic, declarative test specification

language for language definition testing.

– A fully language-agnostic approach to language embed-
ding that incorporates syntactic, semantic, and editor ser-
vice aspects of a language under test.

– The implementation of such a testing language as the
Spoofax testing language1 and a description of its imple-
mentation architecture.

Outline We begin this paper with background on lan-
guage definitions. Next, we discuss the design of a language-
parametric testing language from three angles: first from a
purely linguistic perspective in Section 3, then from a tool
support perspective in Section 4, and finally by illustrating
use cases with examples in Section 5. Our implementation
architecture is described in Section 6. We conclude with re-
lated work on language testing approaches and directions for
future work.

2. Background: Language Definitions
The development of a compiler for a DSL for a domain com-
prises many tasks, ranging from construction of a parser to a
semantic analyzer and code generator. In addition to a com-
piler, the construction of an integrated development environ-
ment (IDE) is essential, as developers increasingly rely on
IDEs to be productive. Traditionally, a lot of effort was re-
quired for each of these tasks. Parsers, data structures for
abstract syntax trees, traversals, transformations, and so on
would be coded by hand for each language. The implemen-
tation of editor services expected from modern IDEs, such as
syntax highlighting, an outline view, reference resolving for
code navigation, content completion, and refactoring, added
to this already heavy burden. This meant that a significant
investment in time and effort was required for the develop-
ment of a new language.

Language engineering tools Nowadays there are many
tools that support the various aspects of language engineer-
ing, allowing language engineers to write high-level lan-
guage definitions rather than handwrite every compiler, in-
terpreter and IDE component. Particularly successful are
parser generators, which can generate efficient parsers from
declarative syntax definitions. For semantic aspects of lan-
guages, there are numerous meta-programming languages
and frameworks. For the development of IDE support there
are also various tools and frameworks that significantly de-
crease the implementation effort.

Language workbenches are a new breed of language de-
velopment tools [13] that integrate tools for most aspects of
language engineering into a single environment. Language
workbenches make the development of new languages and
their IDEs much more efficient, by a) providing full IDE
support for language development tasks and b) integrating
the development of the language compiler/interpreter and its
IDE. Examples of language workbenches include MPS [37],
MontiCore [28], Xtext [11], and our own Spoofax [25].

Language workbenches allow for an agile development
model, as they allow developers to use an IDE and to “play”
with the language while it is still under development. Fig-
ure 1 shows a screenshot illustrating how they can combine
the development of a language with the use of generated ed-

1Distributed as part of the Spoofax language workbench [25], available
with nightly builds of version 0.6.1 via http://www.spoofax.org/.
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Figure 1. Language workbenches can combine language
definition (left) and language use (right).

itors for that language. Once a syntax definition has been de-
veloped (at the left), they can generate an editor with basic
editor services such as syntax highlighting and syntax error
marking. From there, language engineers can incrementally
and iteratively implement new language components and ed-
itor services.

Examples and tests Many new languages start with
sketches. Sketches of example programs or code snippets
that solve a particular problem in the domain of the lan-
guage. With language workbenches, it is common practice
to maintain a “scratch pad” with some example program that
focuses on new features that are under development. Lan-
guage engineers can interact with it in various ways. For ex-
ample, they can introduce type errors (“does the type checker
catch this?”), control-click on an identifier (“does this hyper-
link point to the right place?”) or generate and run code for
the example.

Example programs quickly grow unwieldy, and, as com-
monly seen with interactive systems [31], they are often
thrown away once they show satisfactory results. This is a
major problem as these test cases are a valuable investment
that simply disappears after testing is completed. The prob-
lem results from the high threshold of setting up tests for
languages and their IDE, running tests in an automated fash-
ion, ensuring that the observed behavior complies with the
expectations, and so on. The effort does not compare to the
ease of testing it interactively. Without better tool support,
proper testing remains an afterthought, even in an integrated
language engineering environment such as a language work-
bench.

3. Test Specification Language Design
In this section we describe the design of a language-
parametric testing language and show how it can be used
to test different aspects of language definitions. The design
of the language is highly intertwined with the tool support
that is provided for it and how users can interact with it. We
discuss those aspects of the language in the next section.

The central goal set out for design of an LPTL is to pro-
vide a low-threshold test specification language that forms
the basis for a reusable infrastructure for testing different
languages. The design principles of this language are as fol-
lows:

P1 Provide a language-agnostic framework. The language
should provide a generic, language-agnostic basis that
caters for a wide spectrum of different types of tests.

P2 Maintain implementation independence. The language
should emphasize black-box testing [31], allowing tests
to be written early in the design process, and abstracting
over implementation specifics.

P3 Support language-specific instantiation. It should be
possible to instantiate the language for a specific lan-
guage under test, thereby integrating the two languages
and the tool support provided for the two.

P4 Facilitate series of tests with test fixtures. The language
should support test fixtures to specify series of tests with
common boilerplate code such as import headers.

In the remainder of this section we show how these prin-
ciples can be realized, and show the design of the Spoofax
testing language, our implementation of an LPTL.

A language-agnostic framework (P1) Key to providing
a reusable, language agnostic framework is providing a
generic language that can quote test fragments and can spec-
ify conditions to validate for those tests. We realize this using
the following syntax to specify tests:

test description [[
fragment

]] condition*

where description is a string that describes the current test
case in human readable form and fragment is an embedded
program or program fragment in the language under test.
The condition* elements specify the expectations of the test
case, and control what test is performed for the input frag-
ment.

Figure 2 shows an example test case where we test the
mobl [20] language, a domain-specific language for mobile
applications. In this example we declare a local variable
s of type String and assign an integer literal value to it.
This is a negative test case: a value of type String would
be expected here. The conditions clause of this test case
indicates that exactly one error was expected here, which
means that the test case passes.

To ensure the test specification syntax is language agnos-
tic, it cannot have any specific elements for a particular lan-
guage. The set of different possible tests that can be specified
must be based on a generic interface for observable behavior
commonly supported by languages. Furthermore, the quo-
tation mechanism cannot be limited to only a single, fixed
sequence of characters such as the double square brackets
above, since those may also be in use by the language under
test. In the Spoofax testing language we address this issue by
supporting additional quotation markers such as [[[, [[[[,
and variations with series of "" quotes.
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test Cannot assign an integer to a string [[
module Example

function f() {
var s : String = 1;

}
]] 1 error

Figure 2. A basic mobl test case.

test basic completion [[
module Example
function get(argument : String) : String {

return [[arg]];
}

]] complete to "argument"

Figure 3. A test to verify that the selected identifier arg
completes to argument.

Implementation independence via black-box testing (P2)
Black-box tests [31] test the functionality rather than the in-
ternal workings of a software artifact. They are independent
of the internal workings of a tested artifact or unit and focus
only on its observable behavior (output) given some input.
The example of Figure 2 illustrates this principle, as it re-
veals nor assumes anything about the implementation of the
language under test.

As inputs of a black-box language test we use 1) the
quoted fragment of code, 2) the conditions clause, and 3) se-
lections of code within the quoted fragment. The first two
were illustrated in the example of Figure 2. The test input
fragment indicates the input to feed to the language imple-
mentation, and the conditions clause indicates what action
to trigger and what check to perform. In our example, the
1 error clause indicates that the implementation should
perform semantic checking and that only one error is ex-
pected. Other clauses can specify other actions and checks
such as syntactic checks, name resolution, refactoring, and
execution. In some cases, they specify user input such as a
name for a rename refactoring or command-line arguments
for an execution test. We give an overview of these facilities
at the end of this section.

For many forms of tests it is useful to specify some form
of selection in the input fragment. For instance, consider Fig-
ure 3, which shows a content completion test. The double
brackets inside the quotation indicate a selected part of the
program where content completion would be applied. Selec-
tions can indicate identifiers or larger program fragments for
tests of features such as reference resolving, content com-
pletion, and refactorings. Some tests use multiple selections,
in particular for reference resolving, where both a name ref-
erence and its declaration can be selected.

Language-specific instantiation (P3) Instantiation of the
testing language for a specific language under test requires
that the test suite specifies which language to use for its
test cases. Optionally tests suites can also specify which

language mobl

setup [[
module Example

function f() {
var s : String = "";
[[...]]

}
]]

test Cannot assign an integer to a string [[
s = 1;

]] 1 error

test Can assign a string to a string [[
s = "a string";

]]

Figure 4. A testing module with a shared setup block.

syntactic start symbol they use, e.g. a module, statement, or
expression. Based on this information, it becomes possible
to evaluate the test cases by invoking or interpreting the
language implementation. To fully realize language-specific
instantiation, the IDE that supports the testing language can
also be adapted to incorporate the syntax and semantics of
the tested language, as we illustrate in the next section.

We organize suites into one or more modules (i.e., files),
where each module has a series of test cases and its own
configuration. For each module we use headers that indicate
their name, what language to use, and what start symbol to
use:

module test-assignments
language Mobl
start symbol Expression

Of these headers, only the language header is compulsory.
Once the language under test is specified, the LPTL and
the language under test are composed together, and quoted
test fragments are no longer treated as mere strings but as
structured part of test specifications.

Test fixtures (P4) A common technique in testing frame-
works such as the xUnit [19] family of frameworks, is to
use setup() and tearDown() methods2 to create test fix-
tures. These methods respectively initialize and de-initialize
common state for a series of tests. For language testing, the
same principle can be applied. We use setup blocks to spec-
ify common elements for tests.

Consider again our basic example of Figure 2. Suppose
we want to write multiple, similar tests for assignments
in the same context. This would require writing the same
boilerplate in for each test case: a module, function, and
variable declaration. These commonalities can be factored
out using setup blocks, as shown in Figure 4. Instead of
writing the same boilerplate for every test case, it suffices to
write it only once using the shared setup block. The contents

2Note that more recent implementations such as JUnit 4 often use
annotations for this functionality.
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Configuration
module name Module name name.
language language Use language as the language under test.
start symbol symbol Use syntactic start symbol symbol.
Test cases
test description f c* A test case where f must satisfy conditions c*.
test description expression A white-box test case where freeform test condition expression must be satisfied.
setup description f A setup block for test cases in this module. Can use [[...]]3 in f for placeholders.
Tested fragments (f)
[[ ( code | [[code]] )* ]]3 Partial code fragments in the language under test.
[[[ ( code | [[[code]]] )* ]]] Alternative fragment quoting style with three brackets.
[[[[ ( code | [[[[code]]]] )* ]]]] Alternative fragment quoting style with four brackets.
Test conditions (c)
succeeds Fragment succeeds parsing and has no semantic errors/warnings (default cond.).
fails Fragment has semantic errors or warnings.
parse pattern Fragment parses according to pattern.
n error | n errors Fragment has exactly n semantic error(s).
n warning | n warnings Fragment has exactly n semantic warning(s).
/regex/ Fragment has an error or warning matching regular expression regex.
resolve ( #n )? Successfully resolves the identifier at the (nth) selection.
resolve #n to #m Resolves the identifier in the nth selection to a declaration at the mth selection.
complete ( #n )? to x Content completion proposals for the (nth) selection include a name x.
refactor ( #n )? r ( (arg) )? p Applies refactoring r with argument string arg according to pattern p.
build builder ( (arg) )? p Builds the fragment using builder builder with argument arg according to p.
run runner ( (arg) )? p Executes the fragment using runner runner with argument arg according to p.
e Freeform expression e, specified in the language definition language, is satisfied.
Patterns in test conditions (p)

Empty pattern: same as succeeds.
succeeds Operation (i.e., refactoring, builder, execution) is expected to be successful.
fails Operation is expected to fail.
to term The result should match a term pattern such as PropAccess("a","b").
to fragment The result should match a code fragment fragment.
to file file The result should match the contents of file file.

Figure 5. Summary of the test specification syntax.

of the setup block serves as a template for the test cases,
where the [[...]] placeholder is filled in with the contents
of each test block.4 The placeholder is optional: if none is
specified, we assume it occurs at the end of the setup block.

Setup blocks are essentially a purely syntactic, language-
agnostic feature, but they are highly flexible. They can be
used to factor out boilerplate code from individual tests, such
as module and import declarations. They can also be used to
declare types, functions and values used in test cases. Much
like with the setup() and tearDown() methods of xUnit,
they can also be used to perform tasks such as database
initialization for test cases that execute tested programs.

3Alternatively, [[[. . .]]]or [[[[. . .]]]]can be used.
4Note that we overload the quotation brackets to specify anti-

quotations for selections and for placeholders in setup blocks. This design
ensures minimal syntactic interference with the language under test, as lan-
guage engineers can pick which quotation markers to use (e.g., [[, [[[, and
so on).

Overview We conclude this section with an overview of
our test specification syntax, shown in Figure 5. So far we
already discussed test configuration, test cases, and tested
fragments. The table also shows the possible condition
clauses for syntactic, static semantic, and dynamic semantics
tests, and the patterns that can be used with some condition
clauses. We further illustrate those elements with a series of
examples in Section 5.

4. Test Specification Interaction Design
Tool support is an important factor for productivity with pro-
gramming languages. For the domain of testing in particular,
good tool support is important to lower the threshold of test-
ing [15]. In this section we show how tool support in the
form of IDE components can be applied to lower the thresh-
old to language definition testing and to increase the produc-
tivity of language engineers when editing and running tests.
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We propose a combination of four forms of tool support
for language definition testing. For editing tests, we propose
to aid language engineers by providing editor services for
1) the generic test specification language, and 2) editor ser-
vices of the language under test in test fragments. For run-
ning tests, we propose a combination of 3) live evaluation
of test cases as they are edited, and 4) a batch test runner
for testing larger test suites. In the remainder of this section
we show how these forms of tool support are realized in the
Spoofax testing language and how they can be used. The un-
derlying implementation aspects are discussed in Section 6.

4.1 Editor Services for Test Specification
Integrated development environments are a crucial factor
in programmer productivity [32]. Modern IDEs incorporate
many different kinds of editor services, assisting developers
in code understanding and navigation, directing developers
to inconsistent or incomplete areas of code, and even helping
them with editing code by providing automatic indentation,
bracket insertion, and content completion.

Most editor services provided in modern IDEs are lan-
guage specific, and can be defined as part of the language
definition. The challenge in providing effective IDE sup-
port for language definition testing is in providing language-
specific support for both the testing language and for the em-
bedded language under test.

Editor services for the generic testing language Editor
services for the generic testing host language are the meat
and potatoes for making language engineers more produc-
tive with testing. Our implementation provides the full range
of syntactic and semantic editor services for working with
the testing language, ranging from syntax highlighting to er-
ror marking and content completion for all elements of Fig-
ure 5.

Editor services for language under test Rather than treat
tested fragments as an opaque input string, we use editor ser-
vices of the language under test to support them as first-class
parts of a test specification. Our implementation provides
services such as syntax highlighting, syntax error marking,
semantic error marking, and content completion, as shown in
the screenshots of Figure 6 (a) and (b). Note that error mark-
ers are only shown for failing test cases, not for negative test
cases where errors are expected (Figure 6 (c)).

4.2 Running Language Definition Tests
Live evaluation of test cases Live evaluation of test cases
as they are edited ensures that language engineers get the
same rapid feedback and editing experience as they get with
“throwaway” programs used to test language definitions. To
achieve this effect, our implementation evaluates tests in the
background and shows which tests fail through error and
warning markers in the editor. With this feedback, devel-
opers can quickly determine the status of tests in a testing
module. Since some operations may be long-running, we ex-

(a) Content completion for the language under test.

(b) Online evaluation of tests and error markers.

(c) A passing test case specifying negative test condition.

Figure 6. IDE support for test specifications.

clude test cases that depend on building or executing the test
from background execution, and instead focus on tests of
the syntax, static semantics, and transformations defined for
a language.

Batch execution To support long-running test cases and
larger test suites, we also provide a batch test runner as de-
scribed in [15]. Such a test runner is particularly important
as a language project evolves and the number of tests grows
substantially and tests are divided across multiple test mod-
ules. Figure 7 shows a screenshot of our graphical test run-
ner. The test runner gives a quick overview of passing and
failing tests in different modules and allows developers to
navigate to tests in a language project. Tests can also be eval-
uated outside the IDE, for example as part of a continuous
integration setup.

4.3 Using Integrated Language Definition Testing
Rather than designing a complete new language “on paper,”
before its implementation, it is good practice to incremen-
tally introduce new features and abstractions through a pro-
cess of evolutionary, inductive design [13, 36]. The LPTL
approach makes it possible to start a language design with
examples that (eventually) form test cases.
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Figure 7. The batch test runner.

Testing from the point of inception of a language requires
that the tested language implementation artifact is in such
a state that it can produce some form of output for a given
input program. Language workbenches such as Spoofax can
generate an executable – and thus testable – language plu-
gin from only a (partial) syntax definition [25]. Additional
features, in the form of editor services and static and dy-
namic semantics, can then be iteratively and incrementally
added. With an LPTL, each new feature can be tested at at
any stage of the development process. This makes it possible
to develop languages in a test-driven fashion, following the
rhythm described in [1]:

1. Write a test case.

2. Watch it fail.

3. Implement the tested feature.

4. Watch all tests succeed.

5. Refactor when necessary and repeat.

Our approach facilitates this process for language engineer-
ing by providing a specialized language testing infrastruc-
ture that gives direct feedback at any stage in this develop-
ment cycle.

5. Language Definition Testing by Example
In this section we show how different language aspects can
be tested through examples using the mobl language.

Mobl Mobl is a statically typed language and compiles to a
combination of HTML, Javascript, and CSS. Mobl integrates
sub-languages for user interface design, data modeling and
querying, scripting, and web services into a single language.
In this paper we focus on the data modeling language.

An excerpt of the syntax of mobl is shown in Figure 8. In
mobl, most files starts with a module header, followed by a
list of entity type definitions, functions, and possibly state-
ments. An example of a mobl module that defines a single
entity type is shown in Figure 9. Entities are persistent data
types that are stored in a database and can be retrieved using

Start ::= "module" QId Def*

Def ::= "entity" ID "{" EBD* "}"
| Function
| Stm

EBD ::= ID ":" Type
| Function

Function ::= "function" ID
"(" (FArg ("," FArg)*)? ")"
":" Type "{" Stm* "}"

Stm ::= "var" ID ":" Type "=" Exp ";"
| "var" ID "=" Exp ";"
| Exp "=" Exp ";"
| Exp ";"
| "{" Stm* "}"
| "if" "(" Exp ")" Stm ("else" Stm)?
| "foreach" "(" ID "in" Exp ")" Stm
| "foreach" "(" ID ":" Type "in"
Exp ")" Stm

Exp ::= STRING
| NUMBER
| "null"
| "this"
| Exp "." ID
| ID "(" (NameExp ("," NameExp)*)? ")"

NameExp ::= ID "=" Exp | Exp

FArg ::= ID ":" Type

Type ::= ID | "Collection" "<" Type ">"

QId ::= ID | QId "::" ID

Figure 8. A subset of mobl’s syntax, from [20].

module tasks::datamodel

entity Task {
name : String
date : DateTime

}

Figure 9. A mobl definition of a Task data type.

mobl’s querying API. We import the tasks::datamodel

example module in tests throughout this section.

5.1 Syntax
The syntax definition forms the heart of the definition of
any textual language. It incorporates the concrete syntax
(keywords etc.) and the abstract syntax (data structure for
analysis and transformations) of a language, and is generally
the first artifact developed with a new language definition.
The syntax can be considered separately from the remainder
of a language definition, and can be used to generate a parser
and editor with basic syntactic services. It can also be tested
separately from any semantic aspects of the language.

Syntax tests can be used to test newly added language
constructs. They can include various non-trivial tests such as
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language mobl
start symbol Stm

test Named parameters [[
var e = Task(name="Buy milk");

]] parse succeeds

test ‘true’ is a reserved keyword [[
var true = 1;

]] parse fails

test Test dangling else [[
if (true)

if (true) {}
else {}

]] parse to
IfNoElse(True, If(True, _, _))

test Nested property access [[
v = a.b.c;

]] parse to
Assign("v",
FieldAccess(FieldAccess("a", "b"), "c"))

Figure 10. Syntactic tests.

tests for operator precedence, reserved keywords, language
embeddings, or complex lexical syntax such as the quotation
construct of Figure 5.

We distinguish two forms of syntax tests. First, there are
pure black-box tests, which test if a code fragment can be
parsed yes or no. The first two examples of Figure 10 show
positive and negative black-box tests. Next, we also support
syntactic tests that use tree patterns to match against the
abstract syntax produced by the parser for a given fragment.
The third and fourth tests in the figure show examples of
such tests.5 These tests are not pure black-box tests as they
expose something about the implementation of the parser.
They may not rely directly on the internals of the parser,
but they still depend on the technology used. Many parser
generators rely on restricted grammar classes [26], placing
restrictions on the syntax definition, making it difficult to
produce certain trees such as the left-recursive trees for field
access in Figure 10. In Spoofax, these restrictions are not an
issue since we use a generalized-LR parser.

5.2 Static semantic checks
Static semantic checks in languages play an important role
in the reliability of programs written in that language. With
DSLs such as mobl, these checks are often specific to the
domain of the language, and not supported by the target
platform. In mobl’s case, a dynamic language is targeted that
performs no static checks at all.

With tests we can have better confidence in the static
checks defined for a language. Examples are shown in Fig-

5We use prefix constructor terms to match against tree patterns, match-
ing against the name of a tree node and its children. Wildcards are indicated
with an underscore.

language mobl

setup [[
module tasks
import tasks::datamodel

var todo = Task(name="Create task list");
]]

test Entity types have an all() built-in [[
var all : Collection<Task> = Task.all();

]] succeeds

test Assigning a property to a Num [[
var name : Num = todo.name;

]] 1 error /type/

test Local variable shadowing [[
function f() {

var a : A;
{

var a : A;
}

}
]] 1 error /already defined/

Figure 11. Tests for static semantic checks.

ure 11. We use a setup block6 in this figure to import the
tasks::datamodel module, and to initialize a single Task
for testing. The first test case is a positive test, checking that
the built-in all() accessor returns a collection of tasks. The
other tests are negative tests. For such test cases, it is gener-
ally wise to test for a specific error message. We use regular
expressions such as /type/ to catch specific error messages
that are expected.

5.3 Navigation
Modern IDEs provide editor services for navigation and
code understanding, such as reference resolving and content
completion. These services are a manifestation of the name
analysis that is highly important for the dependability of a
language implementation. Tests for reference resolving and
content completion test not only the user experience in an
editor, but also the underlying name analysis and any other
analyses it may depend on.

Figure 12 shows examples of tests for reference resolv-
ing and content completion. Note how reference resolving
tests can use multiple selected areas. Our first test case tests
variable shadowing, while the second one tests reference re-
solving for function calls. For content completion we test
completion for normal local variables, and for built-ins such
as the all() accessor.

5.4 Transformations and Refactorings
Transformations can be used to create views and for com-
pilation. To test transformations, we use the notion of a

6Recall that the [[...]] placeholder notation is optional: by default,
we assume that the placeholder is at the end. This default elegantly allows
most mobl tests to avoid explicit placeholders.
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language mobl

setup [[
module navigation
import tasks::datamodel

var example = "Magellan";
]]

test Resolve a shadowing variable [[
function getExample() : String {

var [[example]] = "Columbus";
return [[example]];

}
]] resolve #2 to #1

test Resolve a function call [[
function [[loop]](count : Num) {

[[loop]](count + 1);
}

]] resolve #2 to #1

test Content completion for globals [[
var example2 = [[e]];

]] complete to "example"

test Content completion for queries [[
var example2 = Task.[[a]];

]] complete to "all()"

Figure 12. Reference resolving and content comple-
tion tests.

builder. Builders are transformations that can be triggered
by the user, displaying a view or generating code [25]. Mobl
implements several, for use by both end-programmers and
meta-programmers. The first test case in Figure 13 shows
an example of a test for the desugar builder, one of the
builders used by the designers of mobl to inspect the desug-
ared version of a module.

Refactorings are a form of transformations that rely
on pre-conditions and post-conditions to perform behavior-
preserving transformations [12]. With tests, language engi-
neers can gain more confidence about the transformation
performed for a refactoring and its pre- and post-conditions.
The second test case in Figure 13 is an example of a refac-
toring test. The example tests the rename refactoring with
the input string "y" which determines the new name of the
selected identifier. The test condition compares the output to
the expectation, where behavior is only preserved if just the
local variable x is replaced and not the other x’s.

5.5 Code Generation and Execution
The ultimate goal of most language definitions is to generate
or interpret code for execution. Sometimes, languages also
generate artifacts for inspection by the user, such as a graph-
ical view of all entities in a mobl application. Testing can
be used to confirm that exactly the right output is generated
for a particular input, but those tests are often rather fragile:
one small change in a compiler can break a test case even
if the program still compiles correctly. It is more practical
to use an external oracle for those tests, such as a compiler

language mobl

setup [[
module Example
import tasks::datamodel

]]

test Desugaring adds a type to foreach [[
foreach (t in Task.all()) {

// ...
}

]] build desugar to [[
foreach (t : Task in Task.all()) {

// ...
}

]]

test Rename refactoring [[
var x = 1;
function x(x : Num) : Num {

return [[x]];
}

]] refactor rename("y") to [[
var x = 1;
function x(y : Num) : Num {

return y;
}

]]

Figure 13. Tests for transformations and refactorings.

or lint-type checker. Another strategy is to ensure that the
program is executable and to simply run it: execution tests
can indirectly serve as tests of generated code correctness.
For execution tests we use the notion of a runner. Similar to
a builder, runners are operations that execute code, through
interpretation or by running a generated program.

Figure 14 shows tests for code generation and execution.
We use a setup block to initialize the database by adding
new Task instances that can be used in the tests. In the
first test case we have a test that only triggers code gener-
ation, using mobl’s generate-artifacts builder. In this
case the builder is only required to succeed, we do not ex-
plicitly check its output. The other test cases use a runner
run-test, which invokes the getResult() function and
returns the result as a string for comparison.

5.6 Testing for end-programmers
So far we have considered testing for meta-programmers.
End-programmers that use a language are generally not in-
terested in testing the syntax or static semantics of a lan-
guage. They are, however, interested in the dynamic se-
mantics; writing unit tests for programs written in the lan-
guage. An LPTL can be used as a basis for maintaining
and running such tests. End-programmers then get the same
language-specific feedback and tooling for writing tests as
meta-programmers, and can use the same testing language
for testing multiple DSLs that may be employed in a project.

The LPTL as we designed it is aimed at meta-
programmers, and provides a general platform for testing.
For end programmers it can be specialized for one partic-
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language mobl

setup [[
module runtimetests
import tasks::datamodel

foreach (n in range(0, 10)) {
add(Task(name="Task "+n));

}

function getResult() : Num {
return [[...]];

}
]]

test Compile to HTML/JavaScript/CSS [[
1 + 1

]] build generate-artifacts

test String API [[
"string".indexOf("r")

]] run run-test("getResult") to "2"

test Counting query [[
Task.all().count()

]] run run-test("getResult") to "10"

Figure 14. Code generation and execution tests.

ular language (eliminating the language header) and for
the purpose of execution tests (simplifying the run clause).
Providing specialized instances of the test specification lan-
guage is considered future work.

5.7 Freeform tests
The test specification language is open-ended: if there are
aspects of a language definition that need testing but are
not covered by the fixed conditions in the table of Figure 5,
freeform test expressions can be used. In the Spoofax testing
language, we use the Stratego language [5] to specify them,
as it is also the language used to define semantic aspects of
language definitions in Spoofax [25]. Freeform expressions
can directly interact with the language implementation to
express white-box test cases. For example, they can test
whether an internal function that retrieves all the ancestors
in the inheritance chain of a class works, or they can test that
generate-artifacts correctly writes a .js file to disk.

5.8 Self application
An interesting capability of the testing language is that it can
be applied to itself. In our implementation of the Spoofax
testing language, it can be applied to any language designed
in the language workbench, including instantiations of the
testing language. Figure 15 shows an example. Note how
we use the triple-bracket quotation form (i.e., [[[ ... ]]]) in
this example, as the testing language itself uses the normal
double brackets. For the outer test specification, any selec-
tions or setup placeholders should then also be specified us-
ing triple brackets. The inner test specification is free to use
double brackets.

language Spoofax-Testing

test Testing a mobl test specification [[[
module test-mobl
language mobl
test Testing mobl [[

module erroneous
// ...

]] 1 error
]]] succeeds

Figure 15. Testing the test specification language.

6. Implementation
In this section we describe our implementation of an LPTL
and the infrastructure that makes its implementation pos-
sible. We implemented the Spoofax testing language as a
language definition plugin for the Spoofax language work-
bench [25]. Spoofax itself is, in turn, implemented as a col-
lection of plugins for the extensible Eclipse IDE platform.
Most Spoofax language definitions consist of a combination
of a declarative SDF [35] syntax definition and Stratego [5]
transformation rules for the semantic aspects of languages,
but for this language we also wrote parts of the testing in-
frastructure in Java.

6.1 Infrastructure
The Spoofax language workbench provides an environment
for developing and using language definitions [25]. It pro-
vides a number of key features that are essential for the im-
plementation of an LPTL.

A central language registry Spoofax is implemented as an
extension of the IDE Meta-tooling Platform (IMP) [7] which
provides the notions of languages and a language registry.
The language registry is a component that maintains a list
of all languages that exist in the environment. It also allows
for runtime reflection over the services they provide and any
meta-data that is available for each language, and can be
used to instantiate editor services for them.

Dynamic loading of editor services Spoofax supports dy-
namic, headless loading of separate language and editor ser-
vices of the language under test. This is required for instanti-
ation of these services in the same program instance (Eclipse
environment) but without opening an actual editor for them.

Functional interfaces for editor services Instantiated edi-
tor services have a functional interface. This decouples them
from APIs that control an editor, and allows the LPTL to in-
spect editor service results and filter the list of syntactic and
semantic error markers shown for negative test cases.

Support for a customized parsing stage Most Spoofax
plugins use a generated parser from an SDF definition, but it
is also possible to customize the parser used. This allows the
LPTL to dynamically embed a language under test.7

7Note that even though Spoofax supports generalized parsing and syn-
tax embedding techniques, a different approach is required in this case as
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These features are not trivially supported in language work-
benches, but there are other workbenches that support a sub-
set. For instance, where many language workbench imple-
mentations generate relatively opaque, autonomous Eclipse
plugins, MPS [37] is an example of a workbench with first-
class languages and a language registry. Many workbenches
support some level of dynamic loading of services, although
their implementation may be tied to IDE interfaces that may
make it hard to instantiate them in a headless fashion. Func-
tional interfaces for editor services are rare, but could be im-
plemented for workbenches that generate the service imple-
mentations. MontiCore [28] is an example of a workbench
that applies similar techniques with regard to combining host
and embedded language parsers.

6.2 Syntax and Parsing
Language engineers can instantiate the testing language for
any Spoofax language that is loaded in the Eclipse environ-
ment, either as an Eclipse plugin, or as a language project in
source form. Once the developer specifies which language
to test, the syntax of the testing language is instantly spe-
cialized by integrating the syntax of the language under test.
This makes it possible to provide syntactic editor services
such as syntax highlighting, and to parse the file to a sin-
gle abstract syntax tree that is used in the implementation of
semantic editor services and tests evaluation.

In previous work, we have shown how generalized
parsers can be used to syntactically compose languages [6].
Generalized parsers support the full class of context-free
grammars, which is closed under embedding. That is, any
two context-free grammars can be composed to form again
a context-free grammar. This makes it possible to support
modular syntax definitions and allow for language composi-
tion scenarios such as embedding and extension.

Unfortunately, the embedding as we have defined it for
the LPTL is not context-free. First, because test fragments
can only be parsed when their setup block (context) is taken
into consideration. Second, because test fragments are al-
lowed to contain syntax errors, such as spurious closing
brackets. Even when considering syntax error recovery tech-
niques, which use a local or global search space or token
skipping techniques [10], the test fragments must be consid-
ered in isolation to ensure correct parsing of the test specifi-
cation.

As we cannot compose the LPTL parser with that of the
language under test at the level of the syntax definition, we
have chosen for a more ad hoc approach, parsing the LPTL
and the language under test in separate stages. Figure 16 il-
lustrates these stages. First, we parse the LPTL using a skele-
tal test specification syntax, where every setup and test frag-
ment is parsed as a lexical string. Second, we parse each
setup and test fragment again using the parser of the lan-

the embedding cannot be expressed as a context-free grammar, as we dis-
cuss in Section 6.2.

guage under test. For this, the setup fragment is instantiated
for each test, and also parsed separately. As a third step, we
merge the abstract syntax trees and token streams8 of the
skeletal LPTL and of the test cases. The merged tree and to-
ken stream are then used for editor services and to evaluate
the tests in the module.

Our approach makes it possible to directly instantiate the
language without generating a new parser for the instantiated
LPTL. Our Java-based scannerless generalized-LR (JSGLR)
parser is relatively efficient, ensuring good runtime perfor-
mance and allowing for interactive use of the Spoofax testing
language. With support for error recovery techniques [9, 23],
JSGLR also ensures that a valid abstract syntax tree is pro-
duced for providing editor services in case a test module
is syntax incorrect (as seen in Figure 6 (a)). There are still
opportunities for performance optimizations; e.g. the three
stages could be more tightly integrated and caching could be
added for parsing the test fragments, but so far we have not
found the need for this.

6.3 Tool Support
The language registry provided by Spoofax and IMP main-
tains a collection of all languages supported in the environ-
ment, and provides access to factory classes to instantiate
language-specific editor services (e.g. a syntax highlighter,
content completion service, or code generator). Using the
language registry, and the dynamic editor service loading fa-
cilities of Spoofax, it is possible to access the parser, syn-
tactic start symbols, and a list of editor services that can be
instantiated for a language, given its name. We use the reg-
istry to instantiate these services for editor support in the
language under tests and for evaluating tests.

Editor service support in test fragments is provided by
delegation to services of the language under test. An exam-
ple is content completion support to help write test cases.
The editor services for the testing language simply detect
that they are invoked inside a test fragment, and then dele-
gate the work to a service of the language under test. The
only special cases are the syntax error marking and seman-
tic error marking service. These produce lists of errors that
must be filtered according to the test expectations (e.g., if an
error is expected, the IDE should not add a red marker for
it).

The parser and editor services are transparently loaded
on demand once they are used for a test case. As a result, the
editor for a test module is instantly specialized by simply
specifying the name of the language under test. Further con-
figuration is not required. Test cases are also automatically
re-evaluated in the editor if a language definition is changed.

Test evaluation Tests are evaluated by instantiating the
appropriate editor services for the language under test and

8Note that Spoofax uses scannerless parsing, but still constructs a token
stream after parsing based on the lexical structure of parsed sentences, used
for editor services such as syntax highlighting.
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Figure 16. Parsing the LPTL with the embedded language under test (LUT).

applying them to the abstract syntax tree that corresponds to
the test input fragment. For example, consider a reference
resolving test such as that of Figure 12. To evaluate such
a test, the language registry is used to instantiate services
for semantic analysis and reference resolving. Like all editor
services, the reference resolver has a functional interface,
which essentially gets an analyzed program and an abstract
syntax tree node of a reference as its input, and returns the
declaration abstract syntax tree node. To test it, we give it the
analyzed program, obtained from the analysis service, and
the tree node that corresponds to the reference selected in the
test fragment. The result is then compared to the expected
result of the test case.

Execution tests often depend on some external executable
that runs outside the IDE and that may even be deployed
on another machine. Our implementation is not specific for
a particular runtime system or compiler backend. Instead,
language engineers can define a custom “runner” function
that controls how to execute a program in the language. For
a language such as mobl, a JavaScript engine such as Rhino
or a browser emulator such as WebDriver can be used. At
the time of writing, we have not yet completed that binding
for mobl yet.

Test evaluation performance Editor services in Spoofax
are cached with instantiation, and run in a background
thread, ensuring low overhead and near-instant responsive-
ness for live test evaluation. Most editor services are very
fast, but long-running tests such as builds or runs are bet-
ter executed in a non-interactive fashion. We only run those
through the batch test runner of Section 4.2 and display in-
formation markers in the editor if the test was changed after
it last ran.

7. Discussion and Related Work
Related work on testing of language implementations can be
divided into a number of categories: testing with general-
purpose tools, testing with homogeneous and heterogeneous
language embeddings, and test case generation.

Testing with general-purpose tools Considerable experi-
ence exists in the use of general-purpose testing tools and
scripts for tests of language definitions [14, 16, 18, 22, 30].
Sometimes, they take the form of a simple shell script that
builds all files in a directory. In other cases they use JUnit or
a related xUnit-family [19] testing framework.

The use of these tools introduces a number of challenges
when applied to language definitions. First, a major issue
is that a significant investment in language-specific testing
infrastructure must be made to support tests for different as-
pects of languages, ranging from syntax to semantics and
editor services. We support a generic, declarative language
for testing these aspects. A second issue is that to make
sure tests are considered in isolation, each test case is gener-
ally put in a separate file. Using separate files for test cases
introduces boilerplate code such as import headers. It also
makes it harder to organize tests, requiring conventions for
file and directory names. Using test files specified purely in
the tested language also separates test conditions and expec-
tations from the test program. With an additional investment
in effort, some of these issues can be solved, but only on a
per-language basis. We provide a language-generic solution.

Another limitation of these general testing tools is that
they do not provide specialized IDE support for writing
tests. Standard IDEs are only effective for writing valid
programs and report spurious errors for negative test cases
where errors are expected. Batch test runners such as JUnit
also do not have the capability to directly direct users to the
failing line of code in a test input in case a test fails.

Testing with homogeneous embeddings Language em-
bedding is a language composition technique where separate
languages are integrated. An example is the embedding of a
database querying language into a general-purpose host lan-
guage. These embeddings can be heterogeneous, where an
embedded language can be developed in a different language
than the host language, or homogeneous, where the host lan-
guage is used to define the embedded language [21, 34]. Ho-
mogeneous embeddings of DSLs are sometimes also called
internal DSLs. The embedding technique applied in this pa-
per is a heterogeneous embedding.
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Homogeneously embedded languages must always target
the same host language. This can be a weakness when exe-
cution on a different platform is desired (e.g., JavaScript in
the case of mobile development with mobl [20]). It can also
be a strength in terms of tool support. As embedded lan-
guages all target the same platform, they can be tested in the
same way. General-purpose testing frameworks can then be
applied more effectively, since they can directly use the em-
bedded language. In MPS [37], tests based on JUnit can be
evaluated as they are typed, much like with our testing lan-
guage. A restriction of the approach used in MPS is that it
can only be used test the dynamic semantics of a language,
and only allow for positive test cases. With MPS, a projec-
tional editor is used that even restricts the tests so they can
only follow the existing syntax of the language, ruling out
sketches of new syntax and test-driven development of new
syntactic constructs. Our test specification language is more
flexible, supporting a much wider spectrum of test condi-
tions (Figure 5), including negative test cases for syntax or
static semantics and refactoring tests.

Testing with heterogeneous embeddings In previous
work, we developed parse-unit, a grammar testing tool de-
veloped as part of the Stratego/XT program transformation
system and tool [5]. This tool formed a precursor to the
present work. Parse-unit would embed quoted program frag-
ments in a test module, much like in the Spoofax testing
language, but only supported syntactic test cases. There was
also no IDE support for parse-unit, and all quoted program
fragments were treated as strings rather than forming a first-
class part of the language.

Other testing tools that support embedding have similar
limitations as parse-unit, supporting only syntactic tests, and
lacking IDE support. A notable example is gUnit [17], a
testing language for ANTLR grammars. Facilities as those
provided by gUnit have been lacking in current language
workbenches and other interactive tools for building and
debugging parsers such as ANTLRWorks [4].

Test case generation techniques There is a long history
of research on test case generation techniques for language
implementations. An overview is given in surveys by Bou-
jarwah and Saleh [3], and Kossatchev and Posypkin [27].
These techniques use grammars to generate test programs.
To control the theoretically infinite set of programs that can
be generated using most grammars, they use annotations in
grammars, external control mechanisms, or even imperative
generators [8], to constrain this set. In some cases, sophis-
ticated, hand-tailored program generators are used, such as
Csmith [40], a successful 40,000-line C++ generator pro-
gram for randomly generating C programs.

The set of test programs generated with these approaches
can be used to stress-test compiler implementations. For ex-
ample, they can be used to compare a compiler to its refer-
ence implementation, or to check for validity of generated
code for the subset of programs that type-check. As such,

they provide an excellent complementary approach to our
test specifications, possibly catching corner cases that a lan-
guage engineer did not think of. However, as they only test
complete compilation chains and rely on a test oracle such as
a reference compiler, they are less effective for testing lan-
guages while they are still under development. In contrast,
our approach can be used from the point of inception of a
language and even in the design process. By applying test-
driven development, test specifications can be used to guide
the development process. Our test specifications also pro-
vide a more varied array of tests by providing an extensive,
open-ended set of test condition specification constructs for
observable behavior of language implementations.

Unit tests for domain-specific languages As a side-effect
of providing a language for testing language implementa-
tions, our test specification language can also be used to test
programs written in that language (see Section 5.6). This
makes it particularly useful in the domain of testing DSL
programs, where testing tools and frameworks are scarce.
Traditionally, language engineers would have to build such
tools and frameworks by hand, but recently Wu et al. [39]
provided a reusable framework for language testing. They
require language engineers to extend their language with
scripting constructs that generate JUnit test cases. The com-
bined scripting and DSL language can then be used to spec-
ify tests. Their framework ensures that the mapping between
the DSL test line numbers and the generated JUnit tests is
maintained for reporting failing tests. They also provide a
graphical batch test runner. While our approach does not
provide the same flexibility and requires tests to be speci-
fied with a quotation marks and language and run clauses,
it is interesting to note how our approach relieves language
engineers from much of the heavy lifting required for imple-
menting a DSL testing solution. We only require language
engineers to specify a binding to an execution engine (Sec-
tion 6.3), and we provide a generic test specification host
language that is combined with the DSL to test.

8. Concluding Remarks
In this paper we proposed an approach to language def-
inition testing by introducing the notion of a language-
parametric testing language. The LPTL provides a zero-
threshold, domain-specific testing infrastructure based on
a declarative test specification language and extensive tool
support for writing and executing tests. Our implementation
in the form of the Spoofax testing language shows the prac-
tical feasibility of the approach.

Tests inspire confidence in language implementations,
and can be used to guide an agile, test-driven language de-
velopment process. Unfortunately, in current software lan-
guage engineering practice, tests are still too often an af-
terthought. Especially DSLs often remain untested, as they
are developed in a short timespan with limited resources. We
believe that declarative language test suites should become
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standard components of language definitions, just as BNF-
style grammars are. Supported by an LPTL, tests are con-
cise, implementation-independent, and require little to no ef-
fort to setup.

Future work In this paper we emphasized testing of ob-
servable behavior of languages, such as reported errors and
name analysis as manifested by reference resolving in an
IDE. Other analyses such as type or flow analysis are not
manifested that way, but it can be useful to write test cases
for them. Right now, these aspects are either indirectly
tested, or tested using the generic “builders” interface for
custom transformations. Direct support for testing such lan-
guage definition aspects could be a worthwhile addition. Al-
ternatively, rather than seeking to support all possible com-
piler and IDE aspects in a testing language, perhaps a bet-
ter test abstraction mechanism is needed to specify multiple
tests that interact with a language definition in the same way.
Similarly, an abstraction mechanism for setup blocks could
be introduced for improved modularization of test suites, e.g.
by allowing of setup blocks to be put in libraries, to support
multiple arguments, and to support composition.

For the interaction design of the LPTL, previous work on
interactive disambiguation [24] could be applied for hand-
ling ambiguities of quoted test programs. Test understand-
ability can also be improved using further visual aids, for
example to emphasize differences between test inputs and
outputs for refactoring tests.

The declarative basis provided by the LPTL can be used
to integrate generally applicable supportive techniques for
testing, such as test case prioritization, coverage metrics,
coverage visualization, mutation testing, and mutation-based
analyses for untested code. In particular, the integration of
such techniques specialized for the domain of parser and
compiler testing [3, 27, 29] is an important area of future
work.
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