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Abstract. Attribute grammars are a powerful specification formalism for tree-
based computation, particularly for software language processing. Various exten-
sions have been proposed to abstract over common patterns in attribute grammar
specifications. These include various forms of copy rules to support non-local de-
pendencies, collection attributes, and expressing dependencies that are evaluated
to a fixed point. Rather than implementing extensions natively in an attribute eval-
uator, we propose attribute decorators that describe an abstract evaluation mech-
anism for attributes, making it possible to provide such extensions as part of a
library of decorators. Inspired by strategic programming, decorators are specified
using generic traversal operators. To demonstrate their effectiveness, we describe
how to employ decorators in name, type, and flow analysis.

1 Introduction

Attribute grammars are a powerful formal specification notation for tree-based compu-
tation, particularly for software language processing [26], allowing for modular specifi-
cations of language extensions and analyses. At their most basic, they specify declara-
tive equations indicating the functional relationships between attributes (or properties)
of a tree node and other attributes of that node or adjacent parent and child nodes [19].
An attribute evaluator is responsible for scheduling a tree traversal to determine the
values of attributes in a particular tree.

Attribute grammars are nowadays employed in a wide range of application domains
and contexts. To extend their expressiveness for use in particular domains, and to ab-
stract over commonly occurring patterns, basic attribute grammars have been extended
in many ways, in particular supporting attribution patterns with non-local dependencies.
For example, remote attribution constructs allow equations that refer to attributes of
nodes arbitrarily far above or below the node for which they are defined [5,15]. Chain
attributes express a dependence that is threaded in a left-to-right, depth-first fashion
through a sub-tree that contains definitions of the chain value [15]. Self rules provide a
local copy of subtrees, which may be adapted for tree transformations [2]. More gener-
ally, collection attributes enable the value of an attribute of one node to be determined
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at arbitrary other nodes [5,22]. A different kind of remote attribute is provided by ref-
erence attribute grammars that allow references directly to arbitrary non-local nodes
and their attributes [12], allowing for attributes that look up a particular node or collec-
tion of nodes. Finally, some attribute grammar systems support equations with circular
dependencies that are evaluated to a fixed point [4,23].

All of these extensions aim to raise the level of abstraction in specifications, by trans-
lation into basic attribute grammars or by using an extended evaluator. Unfortunately,
each of these extensions has been designed and implemented separately and is hard-
wired into a particular attribute grammar system.Potential users may find that a partic-
ular system does not provide the set of demanded extensions. Adding new abstractions
is non-trivial, since it requires modification of the attribute evaluation system itself.For
example, it can sometimes be useful to thread attribute values from right-to-left (e.g.,
when computing backward slices or use-def relations between variables). In a system
with only left-to-right chained attributes, this dependence must be encoded using basic
attribute equations, despite the similarity of the abstractions.

In his OOPSLA’98 invited talk, “Growing a Language” [28], Guy Steele argued that
“languages need to put the tools for language growth in the hands of the users,” pro-
viding high-level language features that abstract over various extensions, rather than
directly providing language features to solve specific problems. To this effect, we pro-
pose attribute decorators as a solution for the extensibility problem of attribute gram-
mar specification languages. A decorator is a generic declarative description of the tree
traversal or evaluation mechanism used to determine the value of an attribute. Decora-
tors augment basic attribute equations with additional behavior, and can provide non-
local dependencies or a form of search as required. For instance, a decorator can specify
that the value of an attribute is to be sought at the parent node (and recursively higher
in the tree) if it is not defined at the current node. Decorators can also enhance the us-
ability of attribute equations for specific domains, separating the generic behavior from
specific equations such as type checker constraints or data-flow equations, supported in
other systems through specialized extensions.

In this paper, we present ASTER, a system for decorated attribute grammars (avail-
able from [1]). Decorators are powerful enough to specify all of the attribute grammar
extensions listed above, avoiding the need to hardwire these into the system. A library
of decorators suffices to cover common cases, while user-defined, domain-specific dec-
orators can be used for specific applications and domains.

Decorators are inspired by strategic programming, where generic traversal strategies
enable a separation between basic rewrite rules defining a tree transformation and the
way in which they are applied to a tree [33,20,21]. In our case, local attribute equations
define the core values of a tree computation, while decorators describe how those val-
ues are combined across the tree structure. The ASTER specification language is built as
an extension of the Stratego strategic programming language [8]. We reuse the generic
traversal operators of Stratego for the specification of decorators, and its pattern match-
ing and building operations as the basis for attribute equations.

We begin this paper with background on attribute grammars and introducing our ba-
sic notations. Section 3 defines decorators, showing how they augment basic equations
and capture common patterns. In Section 4 we present typical language engineering
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applications, demonstrating how decorators can be effectively applied in this area. We
briefly outline our implementation in Section 5. Finally, we conclude with a comparison
to related work and some pointers to future directions.

2 Attribute Grammars

As they were originally conceived, attribute grammars (AGs) specify dependencies be-
tween attributes of adjacent tree nodes [19]. Attributes are generally associated with
context-free grammar productions. For example, consider a production X ::= Y Z.
Attribute equations for this production can define attributes for symbols X, Y and Z. At-
tributes of X defined at this production are called synthesized, as they are defined in the
context of X. They can be used to pass information upwards. Conversely, attributes of Y
and Z defined in this context can be used to pass information downwards, and are called
inherited attributes.

2.1 Pattern-Based Attribute Grammars

In this paper we adopt a notational variation on traditional AGs in which attribute equa-
tions are associated with tree or term patterns instead of grammar productions [10,6].
Trees can be denoted with prefix constructor terms such as Root(Fork(Leaf(1),
Leaf(2))). Tree patterns for matching and construction are terms with variables (in-
dicated in italics throughout this paper), e.g. Fork(t1,t2).

Basic attribute equations have the form

eq p: r.a := v

and define equations for a term that matches pattern p, where attribute a with a relation
r to the pattern has value v. The relation r can be a subterm of p indicated by a variable
or the term matched by the pattern itself, indicated by the keyword id.

As an example, consider the transformation known as Bird’s repmin problem [3],
which can be well expressed as an AG, as illustrated in Figure 1. In this transformation,
a binary tree with integer values in its leaves is taken as the input, and a new tree with
the same structure and its leaves replaced with the minimum leaf value is produced as
the output. For example, the tree Root(Fork(Leaf(1),Leaf(2))) is transformed to
Root(Fork(Leaf(1),Leaf(1))).

In the specification of Figure 1, the local minimum leaf value in a subtree is computed
in the synthesized attribute min (lines 3, 8 and 12). At the top of the tree, the minimum
for the whole tree is copied to the inherited global-min attribute (line 2), which is then
copied down the tree to the leaves (lines 6 and 7). Finally, the replace attribute con-
structs a tree where each leaf value is replaced by the global minimum (lines 4, 9, 13).

Attribute equations are often defined in sets that share a common pattern, but may
also be grouped to define a common attribute, which can make it easier to show the flow
of information at a glance. Consider Figure 2, which is equivalent to the specification
in Figure 1, but organizes the equations per attribute instead. Equations can be defined
in separate modules, across different files, and are automatically assembled into a com-
plete specification. Thus, language definitions can be factored per language construct
and/or per attribute to support modular, extensible language definitions [13,31].



Decorated Attribute Grammars 145

1 eq Root(t):

2 t.global-min := t.min

3 id.min := t.min

4 id.replace := Root(t.replace )

5 eq Fork(t1,t2):

6 t1.global-min := id.global-min

7 t2.global-min := id.global-min

8 id.min := <min > (t1.min, t2.min)

9 id.replace := Fork(t1.replace ,

10 t2.replace )

11 eq Leaf(v):

12 id.min := v

13 id.replace := Leaf(id.global-min)

Fig. 1. An attribute grammar specification for
repmin in pattern major form

eq min:
Root( t) → t.min
Fork(t1,t2) → <min > (t1.min, t2.min)
Leaf(v) → v

eq global-min:
Root( t ). t → id.min
Fork(t1,t2 ). t1 → id.global-min
Fork(t1,t2 ). t2 → id.global-min

eq replace :
Root( t) → Root(t.replace )
Fork(t1,t2) → Fork(t1.replace ,

t2.replace )
Leaf(v) → Leaf(id.global-min)

Fig. 2. An attribute grammar specification
for repmin in attribute major form

Using patterns helps separation of concerns when specifying a syntax and AG anal-
yses. However, it can still be useful to use the concrete syntax of a language. ASTER

supports this using the generic approach of concrete object syntax embedding as de-
scribed in [32]. For example, instead of a pattern While(e,s), we can use a concrete
syntax pattern, which is typically enclosed in “semantic braces”:

eq |[ while (e) s ]|:
id.condition = e

Concrete syntax patterns are parsed at compile-time, and converted to their abstract
syntax equivalents. Section 4 includes further examples of this technique.

2.2 Copy Rules

In theory, basic attribute equations with local dependencies are sufficient to specify all
non-local dependencies. Non-local dependencies can be encoded by passing context
information around using local inherited and synthesized attributes. In the repmin ex-
ample, this pattern can be seen in the definition of the global minimum value, which is
defined in the root of the tree. This information is passed down by means of so-called
copy rules, equations whose only purpose is to copy a value from one node to another.

To accommodate for the oft-occurring pattern of copying values through the tree,
many AG systems provide a way to broadcast values, eliminating the need for tedious
and potentially error-prone specification of copy rules by hand. For example, the repmin
example can be simplified using the including construct of the GAG and LIGA sys-
tems [15], which provide a shorthand for specifying copy rules. Using this construct,
the copy rules in Figure 1, lines 6 and 7 could be removed and line 13 replaced by
id.replace := Leaf(including Root.global-min), specifying that the value is
to be copied downward from the Root node.

3 Decorators

While constructs such as including provide notational advantages for some specifica-
tions, they cannot be used if the desired pattern of attribution does not precisely fit their
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definition. These notations are built into AG systems, and as such a developer is faced
with an all-or-nothing situation: use a nice abstract notation if it fits exactly or fall back
to writing verbose copy rules if there is no suitable shorthand. This section proposes at-
tribute decorators as a more flexible alternative to building these shorthand abstractions
into the AG system. Decorators can be defined to specify how attribute values are to be
propagated through the tree. Common patterns such as including can be provided in
a decorator library, while user-defined decorators can be written for other cases.

To define high-level attribute propagation patterns, we draw inspiration from strate-
gic programming [33,20,21]. This technique allows the specification of traversal pat-
terns in a generic fashion, independent of the structure of a particular tree, using a
number of basic, generic traversal operations.

3.1 Basic Attribute Propagation Operations

Consider the specification of Figure 3. It specifies only the principal repmin equations,
avoiding the copy rules. The flow of information is instead specified using decorators (at
the top of the specification). For instance, global-min uses the down decorator, which
specifies that values should be copied downwards. Before we elaborate on the decora-
tors used in this example, let us first examine the unabbreviated set of equations and
reduce them to a more generic form that uses elementary propagation operations. After
this, we will show how these operations can be used in the specification of decorators.

def down global-min
def up min
def rewrite-bu replace

eq Root(t):
t.global-min := id.min

eq Fork(t1,t2 ):
id.min := <min> (t1.min,

t2.min)
eq Leaf(v):

id.min := v
id.replace :=

Leaf(id.global-min)

Fig. 3. Repmin using decorators

Downward propagation of the global-min at-
tribute, first defined at the root of the tree (as seen in
Figure 3), was originally achieved by

eq Fork( t1,t2 ):
t1.global-min := id.global-min
t2.global-min := id.global-min

Another reading of this specification says that
‘the global-min of any non-root term is the
global-min of its parent.’ Thus, if we can reflect
over the tree structure to obtain the parent of a node,
we can express this propagation as

eq Fork( t1,t2 ):
id.global-min := id.parent .global-min

eq Leaf(v):
id.global-min := id.parent .global-min

This notation makes the relation to the parent node’s attribute value explicit, rather
than being than implied by the context. It forms the basis of specifying the downward
propagation in a more generic way: id.parent.global-min could be used as the
default definition of global-min, used for nodes where no other definition is given
(here, all non-root nodes). This is essentially what the down decorator in Figure 3 does.

A different form of propagation of values was used in the replace attribute:

eq replace :
Root( t ) → Root(t.replace )
Fork( t1,t2 ) → Fork(t1.replace , t2.replace )

Here we can recognize a (common) rewriting pattern where the node names remain
unchanged and all children are replaced. We abstract over this using the all operator:
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eq replace :
Root( t ) → all (id.replace )
Fork( t1,t2 ) → all (id.replace )

all is one of the canonical generic traversal operators of strategic program-
ming [33,20]. It applies a function to all children of a term. Other generic traver-
sal operators include one, which applies a function to exactly one child, and some,
which applies it to one or more children. In this case, we pass all a reference to the
replace attribute. This reveals an essential property of attribute references in ASTER:
they are first-class citizens that can be passed as the argument of a function in the
form of a closure. The expression id.replace is a shorthand for a closure of the form
λt → (t.replace). It can be applied to the current term in the context of an attribute
equation or in a sequence of operations, or to a term t using the notation <f> t.

3.2 Attribute Propagation Using Decorators

We implement attribute definitions using functions that map terms to values. Parts of
such a function are defined by attribute equations. Some attribute definitions form only
a partial function, such as those in Figure 3. In that figure, copy rules are implicitly
provided using decorators. Decorators are essentially higher-order functions: they are
a special class of attributes that take another attribute definition (i.e., function) as their
argument, forming a new definition with added functionality. This means that the dec-
laration def down global-min and the accompanying equations for the global-min
attribute effectively correspond to a direct (function) call to decorator down:

eq Root(t):
t.global-min := id.down(the original global-min equations, here t.min )

A basic decorator d decorating an attribute a is specified as follows:

decorator d(a) = s

The body s of a decorator is its evaluation strategy, based on the Stratego language [8].
It provides standard conditional and sequencing operations. Using generic traversal op-
erators, the evaluation strategy can inspect the current subtree. These operators are ag-
nostic of the particular syntax used, making decorator definitions reusable for different
languages. In this paper, we introduce the notion of parent references as an additional
generic traversal operator, in the form of the parent attribute. Furthermore, we pro-
vide a number of generic tree access attributes that are defined using these primitives,
such as the prev-sibling and next-sibling attributes to get a node’s siblings, and
child(c) that gets the first child where a condition c applies. Finally, we introduce
reflective attributes that provide information about the attribute being decorated. These
include the defined attribute, to test if an attribute equation is defined for a given term,
and the name and signature attributes to retrieve the attribute’s name and signature.

To illustrate these operations, consider the definition of the down decorator, which
defines downward propagation of values in the tree (see Figure 4). This decorator auto-
matically copies values downwards if there is no attribute equation defined for a given
node. It checks for this condition by means of the defined reflective attribute (1). In
case there is a matching equation, it is simply evaluated (2). Otherwise, the decorator
acts as a copy rule: it “copies” the value of the parent. For this it recursively continues
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decorator down(a) =
(1) if a.defined then
(2) a

else
(3) id.parent.down(a)

end

decorator up(a) =
if a.defined then

a
else

id.child(id.up(a))
end

decorator rewrite-bu(a) =
all(id.rewrite-bu(a))

; if a.defined then
a

end

decorator down at-root (a) =
if not(id.parent) then

a
else

fail
end

Fig. 4. Basic decorator definitions

evaluation at the parent node (3). Conversely, the up decorator provides upward prop-
agation of values. If there is no definition for a particular node, it inspects the child
nodes, eventually returning the first successful value of a descendant node’s attribute
equation.

The rewrite-bu decorator provides bottom-up rewriting of trees, as we did with the
replace attribute. Using the all operator, it recursively applies all defined equations
for an attribute, starting at the bottom of the tree. Rewrites of this type produce a new
tree from an attribute, which in turn has attributes of its own, potentially allowing for
staged or repeated rewrites.

In the next section we provide some examples of more advanced decorators. At their
most elaborate, these may specify a pattern p, can be parameterized with functions a∗
and values v∗, and may themselves be decorated (d∗):

decorator d∗ [p .] name (d [, a∗ ] [| v∗ ]) = s

Note in particular the vertical bar ‘|’, used to distinguish function and value argu-
ments; in a call f(|x), x is a value argument, in a call f(x) it is a function. The
same convention, based on the Stratego notation, is supported for attributes. Further-
more, note that decorators can import other decorators d∗. Such decorators are said to
be stacked, and provide opportunity for reuse. To illustrate this, consider the at-root
decorator of Figure 4. It evaluates attribute equations at the root of a tree, where the
current node has no parent. Using the down decorator, the result is propagated down-
wards. Effectively, applying this stacked decorator results in a function application of
the form id.down(id.at-root(a)). Stacking can also be achieved by declaring mul-
tiple decorators for an attribute. For example, we can add a “tracing” decorator to the
global-min attribute, logging all nodes traversed by the down decorator:

def down trace global-min

4 Applications

In this section we discuss a number of common idioms in AG specifications, and show
how attribute decorators can be used to encapsulate them. We focus on language pro-
cessing, a common application area of AG systems. As a running example we use a
simple “while” language (see Figure 5). We demonstrate different language analysis
problems and how they can be dealt with using high-level decorators that are agnostic
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Program ::= Function*
Function ::= function ID(Arg*) { Stm* }
Stm ::= { Stm* }

| if (Expr ) Stm else Stm
| while (Expr ) Stm
| var ID : Type | ID := Expr
| return Expr

Type ::= IntType | . . .
IntType ::= int
Arg ::= ID : Type
Expr ::= Int | Var | ID(Expr*)

| Expr + Expr | Expr * Expr
Int ::= INT
Var ::= ID

Fig. 5. The “while” language used in our examples

of the object language. As such, they are reusable for more sophisticated languages and
other applications.

4.1 Constraints and Error Reporting

A fundamental aspect of any language processing system is reporting errors and warn-
ings. We define these as declarative constraints using conditional attribute equations.
These equations specify a pattern and a conditional where clause that further restricts
the condition under which they successfully apply:

eq error :
|[ while (e) s ]| → "Condition must be of type Boolean "
where not (e.type ⇒ BoolType )

|[ e1 + e2 ]| → "Operands be of type Int "
where not (e1.type ⇒ IntType ; e2.type ⇒ IntType )

Each equation produces a single error message string if the subexpression types do not
match IntType or BoolType. Rather than having them directly construct a list, we can
collect all messages using the collect-all decorator (see Figure 6). It traverses the
tree through recursion, producing a list of all nodes where the attribute succeeds. Note
that this decorator does not test for definedness of the equations (using a.defined), but
rather whether they can be successfully applied. Using collect-all with the error

decorator node.collect-all(a) =
let results =

node.children .map(id.collect-all(a))
; concat
in if <a> node then // add to results

![<a> node | <results>]
else

results
end

end

Fig. 6. The collect-all decorator

attribute, we can define a new errors
attribute:
def collect-all errors :=

id.error

This notation both declares the decora-
tors and a default equation body, which
refers to error.

To provide usable error messages,
however, the error strings need further
context information. We can define a
new, application-specific decorator to add this information before they are collected,
and use it to augment the error attribute:

decorator add-error-context(a) =
<conc-strings > (a," at ",id.pp ," in ",id.file ,":",id.linenumber )

def add-error-context error
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With this addition, the errors attribute now lists all errors, including a pretty-printed
version of the offending construct (provided a pp attribute is defined), and its location
in the source code (given a file and linenumber attribute).

4.2 Name and Type Analysis

Type analysis forms the basis of static error checking, and often also plays a role in
code generation, e.g. for overloading resolution. Types of expressions typically depend
on local operands, or are constant, making them well-suited for attribute equations.
Moreover, an AG specification of a type analysis is highly modular, and may be defined
across multiple files. Thus, let us proceed by defining a type attribute for all expressions
in our language to perform this analysis:

eq type:
Int(i) → IntType
|[ e1 + e2 ]| → IntType where e1.type⇒ IntType ; e2.type⇒ IntType
Var(v) → id.lookup-local(|v). type
|[ f (args) ]| → id.lookup-function(|f , args).type

Variable references and function calls require non-local name analysis to be typed. This
can be done using parameterized lookup attributes that given a name (and any argu-
ments), look up a declaration in the current scope [12]. In the example we reference the
local type attribute of the retrieved node, but lookup attributes can be used to access
arbitrary non-local attributes for use in various aspects of the system. The actual lookup
mechanism is provided by means of reusable decorators: to do this for a particular lan-
guage, it suffices to select an appropriate decorator and define the declaration sites and
scoping constructs of the language. Our lookup attributes are defined as follows:

def lookup-ordered(id.is-scope ) lookup-local(x) :=
id.decl(|x)

def lookup-unordered(id.is-scope ) lookup-function(|x, args) :=
id.decl(|x, args)

Figure 7 shows the prerequisite decl and is-scope attribute definitions for the name
analysis, specified as arguments of the above attributes. Again, these are highly declar-
ative and each address a single aspect. Declaration sites are identified by the decl
attribute, which is parameterized with an identifier name x and optionally a list of argu-
ments. It only succeeds for matching declarations. All declarations also define a type
attribute. Similarly, the is-scope attribute is used to identify scoping structures. Note
in particular the equations of the “if” construct, which, for the purpose of this example,
defines scopes for both arms, similar to try/catch in other languages.

Languages employ varying styles of scoping rules. In our language we have two
kinds of scoping rules: C-like, ordered scoping rules, and Algol-like, unordered scop-
ing rules. In many languages, local variables typically use the former, while functions
typically use the latter. We define the lookup-ordered and lookup-unordered dec-
orators to accommodate for these styles (see Figure 8). They traverse up the tree,
inheriting the behavior of the down decorator, thus giving precedence to innermost
scopes. Along this path, the lookup-ordered decorator visits the current node (1).
If no declaration is found there (i.e., fetch-decl fails), the <+ combinator specifies
that it should proceed at (2), visiting any preceding siblings using the helper function
lookup-outside-scopes. This function performs a local lookup for declarations in
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eq |[ var x : t ]|:
id.type := t
id.decl(|x) := id

eq |[ x : t ]|: // function parameters
id.type := t
id.decl(|x) := id

eq |[ function f (params) : t stm ]|:
id.type := t
id.decl(|f , args) := id where params.map(id.type).eq(|args.map(id.type))

eq is-scope :
|[ function f(params) : t { stm∗ } ]| → id
|[ if (e) s1 else s2 ]|.s1 → s1
|[ if (e) s1 else s2 ]|.s2 → s2
|[ while (e) s ]| → id
|[ { s∗ } ]| → id

Fig. 7. Attributes for name analysis and types of declarations

these nodes, respecting the scoping rules by avoiding traversal of scoping constructs (3).
In contrast, lookup- unordered follows a straight path to the root of the tree, doing a
search in encountered scopes (4).

4.3 Flow Analysis

Control-flow analysis forms the foundation of data-flow analysis, which is prerequisite
to various compiler optimizations, refactorings, and static checks for bug patterns or
security violations. A recent paper by Nilsson-Nyman et al. [25] demonstrated how
AGs can be employed for modularly specifying such analyses, ensuring separation of
concerns and reusability with different data-flow analyses.

We take an approach similar to that of the JastAdd project, using reference at-
tributes [12] to declaratively define the control flow graph. Consider Figure 9, which
defines a succ attribute, providing a reference to all successors of a statement. For
instance, for the “if” statement, the successors are the “then” and “else” branches (1).

A helper attribute, succ-enclosing, determines the default successors based on the
enclosing block. For sequences of statements, the successor is the next statement in the

decorator down lookup-ordered(fetch-decl, is-scope) =
(1) fetch-decl
(2) <+ id.prev-sibling(lookup-outside-scopes(fetch-decl, is-scope))

decorator down lookup-unordered(fetch-decl, is-scope) =
(id.is-root <+ is-scope) // only look in scoping structures

(4) ; lookup-in-scope(fetch-decl, is-scope)

lookup-in-scope(fetch-decl, is-scope) =
fetch-decl
<+ id.child(lookup-outside-scopes(fetch-decl, is-scope)) // enter scope

lookup-outside-scopes(fetch-decl, is-scope) =
fetch-decl

(3) <+ not(is-scope) // do not enter scope subtrees
; id.child(lookup-outside-scopes(fetch-decl, is-scope))

Fig. 8. Lookup attributes and decorators



152 L.C.L. Kats, A.M. Sloane, and E. Visser

def down succ-enclosing:
Program (_) → []

(2) [s1 , s2 | _].s1 → [s2 ]
(3) |[ while (e) s ]|.s → [id]

(4)def default (id.succ-enclosing) succ:
|[ { s; s∗ } ]| → [s]

(1) |[ if (e) s1 else s2 ]| → [s1 , s2 ]
|[ return e ]| → []
|[ while (e) s ]|

→ [s|s.succ-enclosing]

(5)decorator default (a, default) =
if a then

a
else

default
end

Fig. 9. Specification of the control flow

sequence (2). The “while” statement
overrides this behavior, by setting the
successor of the enclosed block to it-
self (3). For any non-control flow state-
ments, we specify succ-enclosing as
the default successor succ (4), using
the default decorator (5).

The specification of the succ at-
tribute allows for a natural, declarative
way of specifying the forward control
flow of a language. However, a num-
ber of data-flow analyses depend on the
predecessors of a statement. To avoid
specifying these by hand, it is possible
to use collection attributes [5,22,4] to
derive the reverse flow graph. Collection attributes introduce a “contributes to” clause,
allowing nodes to contribute values to collections in other nodes. Using this technique,
we can define the predecessor graph in a single equation, by contributing each statement
to its successors:

def contributes-to(id.succ) stm:
id.pred := stm

Figure 10 defines the contributes-to decorator. Note that for clarity, we use frag-
ments of pseudocode in lieu of more advanced Stratego constructs. The complete, 20-
line source is available from [1]. This decorator operates in two phases: the first time any
collection attribute is evaluated, it enters the survey phase (1), where the complete tree
is traversed, adding all contributing nodes to a list maintained for each node contributed
to. This is done only once, rather than for every collection attribute retrieved. After this
phase completes (2), referenced collections only require the application of any attribute
equations associated with it (for pred, stm is returned). Note that all required book-
keeping operations (i.e., storing contributions and whether the survey phase completed)
are performed in the context of the current attribute: they are stored in tables associated
with the attribute’s unique signature and its argument values (i.e., id.signature).

The control flow graph, specified by the succ and pred attributes, forms the foun-
dation of any data-flow analysis. As such a graph may have cycles in it, these analyses
have the peculiar property that their equations may involve circular dependencies. This
makes them unsuitable for traditional AGs. However, by extending the formalism with

decorator contributes-to(a, targets) =
if not(completed survey phase ) then

(1) mark survey phase complete
; id.root
; in a topdown fashion:

for a node x, apply targets and add them to the list of contributions for x
; end

(2); apply a to the list of contributions for the current node

Fig. 10. The contributes-to decorator, contributing values to a list of nodes
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circular attributes [23,4], it becomes possible to use declarative AG equations to specify
such analyses [25]. Circular attribute equations can be solved by fixed point iteration,
as long as their underlying data forms a lattice. We implemented this in a decorator that
evaluates circular attributes. However, due to a lack of space to fully explain the rather
intricate algorithm that underlies it (see [23,4]), we do not include it here, and refer the
interested reader to the technical report that accompanies this paper [17].

5 Implementation

The ASTER language is built as an extension of the Stratego strategic programming
language [8], which natively supports the canonical generic traversal operators. The
ASTER compiler is implemented in standard Stratego, using only a (bootstrapped) AG
specification for error reporting (using constraint rules similar to those in Section 4.1).
It compiles AG specifications to regular Stratego programs through a series of normal-
ization steps. The normalization process starts by grouping attribute equations together,
forming separate strategies for each attribute and decorator. As illustrated in Section 3.2,
attribute equations and decorators are implemented as functions with generic traversal
operations (called strategies in strategic programming). Inherited attributes are defined
at the parent of a node; therefore, their implementation uses the parent primitive. At-
tribute references and imported decorators are converted to strategy calls. For decorator
calls, static reflective data is added for reflective attributes such as signature. Finally,
a memoization mechanism is added to cache all attribute and decorator calls. In the
technical report that accompanies this paper, we elaborate on these normalization steps,
using the repmin specification as an example [17].

Using memoization, attributes are evaluated at most once, thus achieving optimal
evaluation. Similar memoization-based dynamic evaluation has been used before in
many other systems, e.g. by Jalili [14] and recently in JastAdd [13]. In ASTER, memo-
ization can be selectively disabled and overridden with custom behavior using decora-
tors. For example, we disable it for fixpoint evaluation of data-flow equations.

Our current, experimental implementation has not been tuned for performance. One
constraining factor is currently the ATerm library used to represent trees, which forms
an integral part of Stratego. It is optimized for a maximally shared representation of
terms, where identical subtrees occupy the same space in memory [7]. This makes it
less suitable for storing additional, dynamic information in tree nodes, in our case par-
ent references (for id.parent) and memoized attribute values. We worked around this
by annotating tree nodes with unique keys, and use these to store the added information
in separate tables. In the future, we would like to adapt or replace the underlying imple-
mentation to better accommodate for this. Regardless, preliminary performance mea-
surements indicate promising results. We compared our compiler against JastAdd [13],
a mature AG system that uses an evaluation mechanism conceptually very similar to our
own. We used the repmin program of Figure 1 as a test case. Over an average of fifty
runs, JastAdd took 51 ms to replace all leaves in a large tree with 216 leaves. Our system
took 150 ms, or 180 ms for the version of Figure 3 where decorators are used in place
of manual copy rules. Further testing confirms an unfortunate, but constant overhead
of about a factor three in the base performance level, due to the expensive memoiza-
tion and term initialization operations. Still, the results indicate a low overhead of the
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decorator mechanism. Furthermore, both our specifications, especially when using dec-
orators, are more concise than the version implemented in JastAdd.

6 Related Work

The general principle behind attribute decorators shares similarities with the Decorator
design pattern, which describes how to add functionality to objects at run-time [11].
Variations of this idea exist in languages such as Python, which features decorators for
functions [27]. In our case, we augment basic attribute definitions with either prop-
agation of values from other nodes or with higher-level behavior such as a circular
evaluation scheme. This kind of augmentation is similar to code weaving used in many
forms of aspect-oriented programming [18].

Although considerable research has been devoted to various special-purpose exten-
sions of AGs (as illustrated in the preceding sections), rather less attention has been
paid to extensibility of AG systems. Two systems that do aim at different degrees of
extensibility are Silver [29] and first-class attribute grammars [24].

In first-class AGs, attribute equations are first-class citizens, allowing them to be
combined and manipulated using the language itself. Using function combinators, basic
basic up, down, and chain copy rules can be defined [24]. These combinators show
similarities with decorators, although they are purely defined in terms of functional
dependencies, and lack the reflective and traversal primitives that form the building
blocks of decorators. The paper does not indicate that they could be used to implement
more sophisticated forms of propagation and manipulation of equations, such as the
collection and circularity decorators. Based on the Haskell type checker, first-class AGs
prevent errors where the use of an attribute does not match its type. Errors due to cyclic
dependencies or a mismatch between attribute equations and grammar productions are
not reported. Our system is based on Stratego, which is largely untyped (but could be
typed [21]). Further complicated by the use of parent node references, it currently does
not provide a fully typed system, other than basic static pattern coverage checking.

Silver supports extension with automatic copy rules as well as more advanced fea-
tures such as collection attributes in a relatively accessible manner [29]. Implemented in
itself, the Silver language can be used to modularly implement such extensions. While
adding extensions of this kind is made easier through facilities such as forwarding for
local transformations [30] and higher-order attributes, it is hard to imagine a regular
Silver user building such an extension. Moreover, it is difficult to encapsulate these ex-
tensions in a single application or library, as they must be integrated in the base AG
system. In contrast, many decorators are light-weight so they can be developed quickly
and easily as needed.

A system that particularly inspired our design has been JastAdd [13], which extends
traditional AGs in a number of interesting ways.1 JastAdd uses reference attributes [12],
which we also use in a number of decorators. Its extensions include collection at-
tributes [22] and circular computations [23]. These are built into the JastAdd imple-
mentation; there is no user-level mechanism to define similar extensions. As described

1 For the purposes of this paper, we focus on the attribute grammar features of JastAdd, ignoring
its support for rewriting trees during evaluation [9].
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in Section 4, decorators can be used to define these same features at a higher level.
Admittedly, we would not expect users to define relatively complex features like this
very often, but building on the high-level framework provided by decorators is likely
to be much easier than modifying the underlying implementation of an AG evaluation
system. JastAdd is designed to be used in conjunction with hand-written code, particu-
larly using visitors. As such, it provides a way to write traversals that interoperate with
declarative attribution. In theory, this facility could be used to implement something
similar to decorators, but this would require the addition of generic traversal on top of
the Java implementation of trees, essentially duplicating the Stratego platform we use.

7 Conclusions and Future Work

We propose decorated attribute grammars as a formalism for application-level exten-
sibility of AG systems. To this end, we have identified primitives for the specification
of decorators to define abstract evaluation strategies for attributes. By means of a pro-
totype implementation and by employing decorators in different language engineering
applications, we demonstrated the feasibility of using decorators to implement common
abstractions over basic attribute grammars. These can be provided in the form of a li-
brary, and may be extended with user-defined decorators, where decorator stacking can
be applied to reuse existing definitions.

In the future, we would like to explore further applications of decorated attribute
grammars, in particular in the domain of implementing domain-specific languages and
modular language extensions. For this we want to build upon the rewriting capabilities
of the Stratego transformation language, the foundation of ASTER. As such, we aim
to take the best of both worlds; rewriting with Stratego and declarative analysis with
attribute grammars.

Building on our past experience [16], another application area to which we want to
apply ASTER is that of integrated development environments (IDEs). ASTER’s perfor-
mance is already sufficient to be usable, and its demand-driven evaluation further helps
interactive application. As such, we would like to employ it as part of an IDE in the
future, encapsulating logic for typical editor service components, incremental compila-
tion concerns, and related patterns in decorators.
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