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Abstract
Language extensions increase programmer productivity by
providing concise, often domain-specific syntax, and sup-
port for static verification of correctness, security, and
style constraints. Language extensions can often be realized
through translation to the base language, supported by pre-
processors and extensible compilers. However, various kinds
of extensions require further adaptation of a base compiler’s
internal stages and components, for example to support sep-
arate compilation or to make use of low-level primitives of
the platform (e.g., jump instructions or unbalanced synchro-
nization). To allow for a more loosely coupled approach,
we propose an open compiler model based on normalization
steps from a high-level language to a subset of it, the core
language. We developed such a compiler for a mixed Java
and (core) bytecode language, and evaluate its effective-
ness for composition mechanisms such as traits, as well as
statement-level and expression-level language extensions.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming; D.2.3 [Soft-
ware Engineering]: Coding Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Fea-
tures; D.3.4 [Programming Languages]: Processors

General Terms Languages, Design

Keywords Dryad Compiler, Stratego, Java, Bytecode, SDF,
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1. Introduction
Programming languages should be designed for growth in
order to evolve according to the needs of the user [34].
General-purpose programming languages offer numerous
features that make them applicable to a wide range of appli-
cation domains. However, such languages lack the high-level
abstractions required to adequately cope with the increasing
complexity of software. Through the introduction of lan-
guage extensions, it is possible to increase the expressivity
of a language, by turning programming idioms into linguis-
tic constructs. Language extensions allow for static verifica-
tion of correctness, security, and style constraints. Language
extensions may be domain-specific in nature, such as embed-
ded SQL, or may be general purpose in nature, such as traits
or the enhanced for loop, enumerations, and other features
added in Java 5.0.

The mechanisms available for realizing language exten-
sions determine the quality of extension implementations
and the effort needed for their construction. If language ex-
tensions can be realized with relative ease, then building new
abstraction mechanisms can be used in the software develop-
ment process to replace programming idioms and boilerplate
code. The quality of a language extension comprises robust-
ness (are error messages reported on the extended language?
is code generation complete?), composability (does the ex-
tension combine with other extensions?), and the quality of
the generated code. Finally, separate compilation, i.e. binary
distribution of compiled, statically verified (library) compo-
nents, is an important feature to reduce compilation time.

The creation of a language extension implies the reuse of
an existing implementation of the base language. Generally,
such reuse can be categorized as either black box reuse
of a compiler in the form of a preprocessor, or white box
reuse by means of a deep integration with the compiler
implementation.

Language Extension by Preprocessing A preprocessor
transforms a program in an extended language into a pro-
gram in the base language. Examples of preprocessors in-
clude annotation processors such as XDoclet [37] and Java’s
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APT [35], SQLJ [24] an embedding of SQL in Java, and
StringBorg [5], a generic approach for embedding languages
such as SQL. As they are employed as a separate tool, rather
than requiring integration into a compiler, preprocessors are
highly portable. By avoiding direct compiler extension, their
implementation only requires basic knowledge of a lan-
guage’s structure and semantics, not of its compiler. Thus,
the compiler is considered as a black box; only its published
interface — the syntax of the programming language — is
used, and the internal architecture of the compiler is hid-
den. This separation of concerns makes preprocessors well
suited for rapid implementation or prototyping of language
extensions.

While preprocessors are an attractive, lightweight solu-
tion to language extensibility, they are not considered a ma-
ture solution for production implementation of languages.
Production of a parser that is exactly compatible with the
base language is not always a trivial undertaking. The lack of
a (complete) source level semantic analyzer results in error
messages by the base compiler about code fragments gener-
ated by the preprocessor, rather than the source code written
by the programmer. Separate compilation is only possible if
the compilation units of the extended language align well
with those of the base language. This fails in the case of new
modularity abstractions. In other words, considering the base
compiler as a black box condemns the preprocessor imple-
menter to reimplement the front-end of the base compiler.

Reusing an Existing Compiler To avoid reimplementation
efforts, language extensions are often implemented by exten-
sion of the front-end of a compiler. This level of integration
ensures that existing compiler components, such as a parser
and semantic analysis, can be reused in the extended com-
piler. By generating code in the front-end language, it can
then be further compiled using the base compiler. Traditional
monolithic compilers are typically not designed for extensi-
bility, and adding a new feature may require extensive refac-
toring of the implementation. Since such refactorings are not
incorporated upstream, this effort needs to be repeated with
each release of the compiler. Extensible compilers, such as
Polyglot [28], ableJ [42], and the JastAdd extensible Java
Compiler [13], are designed for extensibility with the prin-
ciple that the implementation effort should be proportional
to the size of the language extension. This front-end exten-
sion pattern is illustrated in Figure 1. However, even these
systems do rely on white box extension, by exposing their
internal structure.

Extending a compiler purely by transformation to the
base language is sometimes inadequate. Compilers typically
consist of multiple stages, parsing and gathering semantic in-
formation in the early stages (the front-end), and generating
and optimizing code in later stages (the back-end) [1]. This
strict separation of stages is imposed to ensure straightfor-
ward modularization and reuse of compiler components. As
such, some compilers for different languages share a com-

Figure 1. The front-end extension pattern, applied by many
conventional extensible compilers.

mon intermediate language and associated back-end. Only
the final stage or stages of a compiler back-end actually out-
put the target-machine code.

Integration into the back-end makes it possible to also
manipulate compiled code. This can be necessary to output
specific instruction sequences or clauses not otherwise gen-
erated by the base compiler. For example, for Java, the front-
end does not expose a ‘goto’ operation, unbalanced synchro-
nization primitives, or means of including debugging infor-
mation. The back-end of a compiler also forms an essen-
tial participant in composition of source and compiled code.
Consider language extensions aimed at modularity, such as
traits [12] and aspects [20]. To support separate compilation,
such extensions require integration into a compiler’s back-
end. Separate compilation enables distribution of modules
in compiled form, or weaving of code into compiled classes.
Using a classic, multi-staged compiler, implementing such
extensions is a demanding task that requires in-depth under-
standing of the compiler. Extensions that span across mul-
tiple compilation stages get tangled throughout the different
components of a compiler, and create a large dependency on
its implementation.

Mixing Source and Bytecode Summarizing, the decision
to extend a compiler using a simple, front-end based ap-
proach, or a more deeply integrated approach, comes down
to a choice between black box or white box reuse of a base
compiler, each with their own drawbacks. Rather than dis-
missing preprocessors, we want to embrace their simplic-
ity and modularity and propose a compiler architecture that
deals with their flaws.

In this paper, we propose an open compiler architecture
based on mixing source and bytecode in order to enable
compilation by normalization. That is, the base language
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Figure 2. Modular extension of a normalizing compiler.

is a combination of the high-level source language (Java)
and the low-level bytecode core language. This means that
it is possible to use bytecode primitives, such as the goto
instruction, directly from Java, as in the statement

if (condition) `goto label;

where the backtick (`) operator is used to distinguish be-
tween the syntax of the two constituent languages. Similarly,
source code expressions and statements can be embedded in
bytecode, nested to arbitrary depth. The compiler for this
mixed base language normalizes an input program in the
combined language to a program in the bytecode core lan-
guage. Thus, the language produced as output of the com-
piler is a subset of the input language.

This architecture combines the light weight construction
of extensions using a preprocessor, with the access to the
compiler back-end of a compiler extension. Without know-
ing the internals of the compiler, a preprocessor can gen-
erate code in the core language where needed, as well as
the extended input language where possible (see Figure 2).
In other words, an extension preprocessor extends the base
compiler by adding transformations from the extended lan-
guage into a mix of low-level and high-level code, as is con-
venient for the definition of the particular extension. The
idea of transformation-based compilers is not new. In par-
ticular, Peyton Jones and Santos [31] applied the idea in
the implementation of the Glasgow Haskell Compiler GHC
in which compiler optimizations are formulated as transfor-
mations on core language constructs. The front-end of the
compiler consists of type analysis and simple desugarings.
However, in GHC the core language is not a subset of the
compiler’s input language. As a result it is not possible to
feed the output of the compiler back into the compiler. In
our approach the complete compiler can be used as a nor-
malization tool, which allows the construction of pipelines
of preprocessors, and the implementation of separate com-
pilation for new abstraction mechanisms. By keeping track

of origin information when generating code, error messages
produced later in the chain can refer to the original source
input.

To evaluate the notion of compilation by normalization,
we have created a prototype implementation of a Java com-
piler based on this principle. This prototype, the Dryad Com-
piler1, unifies the Java language with the underlying byte-
code instruction language. Extending a regular Java type-
checker, we provide full typechecking for this combined lan-
guage. Using the collected type information, we introduce
overloaded instructions to the bytecode language that can be
normalized to regular instructions, and facilitate code gener-
ation.

Outline We proceed as follows. In Section 2 we discuss
the design of a number of language extensions, evaluating
how they benefit from compilation by normalization when
implemented as an extension of the Dryad Compiler. We de-
scribe the syntax and semantics of the mixed Java/bytecode
language and the architecture of its compiler in Section 3. In
Section 4 we discuss how normalization rules incrementally
transform the Java/bytecode language and its extensions to
the core language. In Section 5 we offer a discussion of the
architecture of the Dryad compiler, and compilation by nor-
malization in general. We present related and future work in
Section 6, and finally conclude in Section 7.

2. Extending the Dryad Compiler
In this section, we discuss a number of compiler extensions
for the Dryad Compiler. We first discuss extension at the
class level, with partial and open classes in Section 2.1 and
traits in Section 2.2. In Section 2.3 we discuss how the
principle of compilation by normalization can be applied at
the statement level for iterators, and in Section 2.4 we show
how it can benefit the implementation of expression-level
extensions.

2.1 Extension with Partial and Open Classes
In Java, classes are defined in a single source file. Partial
classes enable the distribution of class members over mul-
tiple source files. Partial classes can be used for separation
of concerns, for example dividing GUI-related and event-
handling code, or as a way of modifying existing classes
included in a third-party application or library. Another ap-
plication of partial classes is merging generated code frag-
ments, such as code generated from partial models [44] or
from modular transformations generating code for specific
aspects [16]. Partial classes can be implemented relatively
easily as an extension of an existing compiler, by merging
them to regular classes.

Open classes extend the notion of partial classes by al-
lowing the extension of compiled classes, rather than just
classes in source code form. One implementation of open

1 http://strategoxt.org/Stratego/TheDryadCompiler
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Figure 3. Using open classes for incremental compilation.

classes for Java is provided by MultiJava [8, 9]. MultiJava
is derived from the Kopi Java Compiler, a fairly small open-
source implementation written in Java itself. This makes it a
relatively accessible candidate for such an extension. Multi-
Java uses different stages that add to the existing stages of
the Kopi compiler (i.e., parsing, importing definitions, differ-
ent typechecking stages, grouping of multi-methods, byte-
code generation). This required a significant part of the de-
velopment effort to be spent in understanding the base com-
piler. Clifton notes that this was in fact the case, attributing
this to a lack of documentation on Kopi [8].

Existing implementations of partial and open classes only
allow the definition of classes that augment others in source
form, merging them into either source or compiled classes.
A third scenario, merging together multiple classes in com-
piled form, is not supported. This scenario can be applied
to use open classes for supporting separate compilation in
compilers that target the Java platform, a technique for ex-
ample applied in [44] and [16]. Consider Figure 3, where
open classes facilitate merging of newly and previously com-
piled class fragments. In this architecture, a compiler for
a domain-specific language (DSL), for example producing
GUI-related code, is implemented as an extension of the
Dryad Compiler. The code it produces is processed by an-
other extension, which merges the open classes for final
compilation.

The mixed source/bytecode language allows us to think
of source and bytecode classes as instances of a single lan-
guage; there is no fundamental difference in the merge pro-
cess required for them. Figure 4 shows the architecture of

Figure 4. Extending the Dryad Compiler to support open
classes.

class Calculator {

// From Calculator_Operations.java

public void add() {

operation = new Add(getDisplay());
...

}

// From Calculator_Gui.class

`private setDisplay(int number : void) [

iload number;
...

]
...

}

Figure 5. Open classes merged to a single Java/bytecode
definition.

the open classes extension. It merges together members of
class fragments, either in source or bytecode form. The re-
sulting Java/bytecode class (see Figure 5) is passed to the
Dryad Compiler, which provides the support for compilation
of these composed fragments. This design allows a straight-
forward implementation of the extension, no longer requir-
ing implementation-level knowledge of the open compiler
it builds on. Compilation of the merged classes is handled
by the base compiler; the extension only provides the com-
position mechanism. Using the technique of source tracing
(on which we elaborate in Section 3.4), it maintains location
information relative to the original source files for compile-
time errors and debugging information.

2.2 Extension with Traits
Traits are primitive units of reusable code that define a set
of methods that can be imported into regular classes. Using
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class Shape with TDrawing {

Vertices getVertices() { ... }
...

}

trait TDrawing {

void draw() { ... }

require Vertices getVertices();

}

Figure 6. Example of a class Shape importing a trait
TDrawing.

a set of operators, traits can be composed and manipulated.
For instance, the with operator composes two or more traits,
and is also used to extend a class with the methods defined
in a trait (see Figure 6). Traits were originally introduced
by Schärli et al. in the context of Smalltalk [12]. They have
since been ported to statically typed languages, such as Java,
C#, and Scala. To support traits in a statically typed context,
they must explicitly specify their required methods, i.e. all
methods that are referenced but not provided by a trait.

To the best of our knowledge, only Scala – which sup-
ports the feature natively rather than in the form of an ex-
tension – supports separate compilation of traits [29]. This
allows for statically verified, binary distribution of traits in
libraries, but requires a significantly different compilation
model than the source-to-source transformation commonly
applied by implementations of traits.

To enable separate compilation to binary class files in our
traits extension, we designed a compilation scheme trans-
lating traits to regular, abstract classes. This way, required
methods can be mapped to abstract methods. Although we
have no intention for the Java Virtual Machine (JVM) to load
these classes at run-time – traits are merely compile-time en-
tities – this mapping enables us to use the base compiler’s
verification and compilation facilities for abstract classes.

After traits are compiled, the resulting class files can be
composed according to the composition operators. For the
with operator this means that a trait’s methods are added to a
client class. Similarly, the minus operator removes methods
from a trait. The rename operator renames a method declara-
tion and all occurrences of it in the core language invocation
constructs. Unlike in Java, the names used in these constructs
are fully qualified and unambiguous, making this a straight-
forward operation. The composition operations are followed
by a basic consistency check that confirms that all required
methods are defined and that there are no duplicate defini-
tions. More extensive typechecking is performed by the base
compiler. Consider Figure 7, which illustrates the architec-
ture of this extension. By leveraging the Java/bytecode lan-
guage for inclusion of compiled code, the extension remains
loosely coupled from the base compiler. Our implementation

Figure 7. Separate compilation of a trait (left) and a class
importing it (right).

for (String s : getShortWords("foo bar")) {

System.out.println(s);

}

Iterator<String> it =

getShortWords("foo bar").iterator();

while (it.hasNext()) {

String s = it.next();

System.out.println(s);

}

Figure 8. The enhanced for loop (top) and its desugared
form (bottom).

of traits currently spans 104 lines of code2, making it a rel-
atively lightweight implementation. Still, it includes support
for separate compilation, consistency checking, and source
tracing. As it does not require implementation-level knowl-
edge of the base compiler, but only of its input language, the
focus shifts to these issues rather than on direct adaptation
of the existing compilation process.

2.3 Extension with Iterator Generators
Java 5.0 introduced the enhanced for loop, a language fea-
ture that allows programmers to iterate over collections.
The Java compiler treats this as a form of syntactic sugar,
and translates it to a regular while loop that uses the
java.lang.Iterable and java.util.Iterator inter-
faces (see Figure 8). As such, the enhanced for loop can be
used to conveniently iterate over any type that implements
the Iterable interface.

Implementing the iterator interfaces is somewhat in-
volved and follows a common pattern with considerable

2 Not included is the syntax definition. Implemented as a stand-alone pro-
gram, this figure does include 47 lines of I/O code, imports, and comments,
all written in the Stratego program transformation language [6].
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boilerplate code. A complementary language extension that
deals with this problem is that of iterator generators, a
feature supported by other languages such as Python and
Sather [27]. Like the enhanced for loop, this feature ab-
stracts away from the underlying interfaces. Consider Fig-
ure 9, which uses it to define an iterator method that splits
a string at every space character. It loops over the results of
a call to String.split(), and uses the yield statement
to return all substrings with less than four characters as ele-
ments of the resulting iterator. The iterator method operates
as a coroutine: control is “yielded” back to the client of the
iterator at every yield statement. When the client requests
the next element, the iterator method is resumed after the
last yield statement.

In earlier work, we implemented the yield statement as
a source-to-source transformation, abstracting over regular
Java control flow statements [19]. The yield statement in-
troduces a form of unstructured control flow: the method can
be entered at any arbitrary point it is used. To express this in
a legal Java program, the desired control-flow graph must be
transformed to make use of Java’s structured control flow
statements, a non-trivial problem, also faced when decom-
piling bytecode [26]. We accommodated for this by using a
switch statement and case labels at every point in the con-
trol flow graph. Since the Java switch statement can only
be used in a structured fashion (i.e., it disallows case labels
inside blocks of code nested in it), all existing control flow
statements in the method must be rewritten to become part of
the switch. This turned out to require significant effort, es-
sentially re-implementing a considerable part of the existing
Java language.

The infomancers-collections library [11] aims to avoid
the complications of source-to-source transformation. It ef-
fectively hides the language extension from the Java com-
piler, by using a dummy yield() method that can be in-
voked from anonymous classes that implement the iterator
interfaces. A regular Java compiler can then be used to com-
pile the code, unaware of the special semantics of these in-
vocations. The resulting bytecode is then altered by the li-
brary, replacing the dummy invocations with an actual im-
plementation, modifying the (unstructured) control flow of
the method. This is a rather intricate process that requires
the use of a bytecode manipulation library to generate a new
class. Since the Java compiler is oblivious to the special se-
mantics of the dummy invocations, it is unable to perform
proper control flow analysis during the initial compilation,
which may lead to unexpected results. In particular, com-
pilers may optimize or otherwise generate code that vio-
lates the stack-neutrality property of statements (see Sec-
tion 3.3), which can result in invalid programs after inserting
new jump instructions.

In our approach, we treat the language extension as a
form of syntactic sugar that can be projected to the base
language (i.e., Java/bytecode), just like the enhanced for

public Iterable<String> getShortWords(String t) {

String[] parts = t.split(" ");

for (int i = 0; i < parts.length; i++) {

if (parts[i].length() < 4) {

yield parts[i];

}

}

}

Figure 9. Iterator definition with the yield statement

class ShortWords implements Iterator<String> {

int _state = 0;

String _value;

boolean _valueReady;

String[] _parts;

int _i;

private void prepareNext() {

if (_valueReady || _state == 2) return;

if (_state == 1) `goto afterYield;

_parts = t.split(" ");

for (_i = 0; _i < _parts.length; _i++) {

if (_parts[_i].length() < 4) {

_state = 1;

_valueReady = true;

_value = _parts[_i];

return; // yield value

afterYield:

}

}

_state = 2;

}

public String next() {

prepareNext();

if (!_valueReady)

throw new NoSuchElementException();

_valueReady = false;

return _value;

}

public boolean hasNext() {

if (!_valueReady) prepareNext();

return _valueReady;

}

public void remove() {

throw new UnsupportedOperationException();

}

}

Figure 10. Iterator definition, generated from Figure 9.
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loop. For this, the yield statement is rewritten to a return
statement to exit the iterator method, in conjunction with
a small, bytecode-based jump table at the beginning of the
method for re-entry. Based on a finite state machine model
of the method, a field _state is maintained to indicate
the next method entry point. Consider Figure 10, which
shows the class that will be generated local to the orig-
inal getShortWords() method. It highlights all lines of
code that directly correspond to the original method. The
prepareNext() method is central to this implementation,
and includes an adapted version of the original method body.
Its control flow is adapted by the addition of unstructured
control flow primitives, in the form of bytecode instructions.
In this example, we implement this using a jump table and
goto instructions, embedded in Java using the backtick (`)
operator. Alternatively, a tableswitch instruction could be
used to form an unstructured switch statement.

It is not possible to statically determine if the iterator
will return a value or not for a given state, and we can-
not make assumptions on the order of invocation of the
Iterator.next() and Iterator.hasNext() interface
methods. Therefore, a call to prepareNext() is used in
both these methods, caching the value as necessary. To en-
sure persistence of local variables during the lifetime of the
iterator, all local variables must be replaced or shadowed by
fields.

The amount of code required to define a custom itera-
tor by implementing the iterator interfaces (Figure 10) illus-
trates the increase in productivity that can be gained by ab-
stracting over this using iterator generators (Figure 9). The
projection to Java/bytecode that realizes this abstraction is
relatively straightforward, as it maintains the structure of the
original method, unlike in our earlier source-to-source ap-
proach. On the other hand, this approach also avoids the
complexity of the low-level, purely bytecode-oriented ap-
proach, eliminating the need for special libraries and us-
ing the convenience and familiarity of the Java language for
most part of the implementation.

2.4 Assimilating Expression-Level Extensions
Embedded domain-specific languages add to the expres-
sivity of general-purpose languages, combining domain-
specific constructs with the general-purpose expressivity of
the host language. Examples include embedded database
queries, or integrated regular expressions. We have explored
DSL embedding with Java as a base language and described
MetaBorg [7], a general approach for DSL embeddings. In
that context, we have coined the term assimilation for the
transformation that melds the embedding with its host code.
Assimilation preserves the semantics of language extension
constructs, while making it possible to compile them using
the base language compiler.

Small, statement- or expression-level language exten-
sions are especially well-suited for assimilation. They can
often be assimilated locally to an implementation in the host

System.out.println(e1 ?? e2);

(a) The ?? operator, with operands of type T.

System.out.println(

{| T lifted = e1; // evaluate e1 only once

if (lifted == null) lifted = e2;

| lifted

|});
(b) In-line assimilation to an expression block.

T lifted = e1;

if (lifted == null) lifted = e2;

System.out.println(lifted);

(c) Lifted to pure Java.

Figure 11. Assimilation using statement-lifting.

language (often API-calls), without disturbing the surround-
ing code. However, for specific kinds of language extensions
this is not possible. One class of such extensions is that of
language extensions that take the form of expressions but re-
quire assimilation to statements in the host language (e.g., to
use control flow constructs or declare local variables, which
is not possible in expressions). In-place assimilation to an
expression does not suffice in these cases, because Java and
similar languages do not allow nesting of statements in ex-
pressions. One technique to overcome this problem is using
an intermediate syntax in the form of expression blocks [7].
These enable the use of statements in expressions, facilitat-
ing in-line expression assimilation.

Expression blocks take the form

{| statements | expression |}

where the statements are executed before the evaluation of
the expression, and the value of the expression block is the
value of the embedded expression. A separate, generally
applicable normalization step in the form of statement-lifting
can be used to lift the statement component of the expression
to the statement level [7]. Consider for example the C#
coalescing operator:

e1 ?? e2

This operator returns the value of expression e1 if it is
non-null, or otherwise the value of e2. It could be used in
conjunction with Java’s nullable (or “boxed”) types and its
support for auto-unboxing, providing a default value when
converting to a non-nullable (i.e., primitive) type.

Consider Figure 11, which shows how the coalescing
operator can be assimilated to regular Java statements. In
Figure 11(a), the operator is used in a method call. Using an
expression block, it is straightforward to translate it in-line
to regular Java statements, as seen in Figure 11(b). Finally, in
Figure 11(c), the expression block is lifted to the statement
level.
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Iterator<Integer> it = ...;

for (int i=i0; it.hasNext(); i = it.next() ?? 0) {

...

}
(a) The coalescing operator in a loop.

Iterator<Integer> it = ...;

Integer lifted = next();

if (lifted == null) lifted = 0;

for (int i = i0; it.hasNext(); i = lifted) {

...

}
(b) Incorrect program after statement-lifting.

Figure 12. Statement-lifting in a for loop.

Unfortunately, proper statement-lifting is not trivial to
implement: it requires syntactic knowledge of every lan-
guage construct that an expression may appear in, includ-
ing various statements, other expressions, and possibly
other language extensions. Furthermore, it requires seman-
tic knowledge of the language, as it is not always sufficient
to simply move statements to the syntactic statement level.
For instance, the simple lifting pattern from [7] cannot be
applied if the expression is the operand of short-circuiting
operators (e.g., || in Java) or the conditional of a for loop
(see Figure 12). In these cases, simply lifting the translated
statements to the statement level changes the semantics of
the program.

In the bytecode core language, there is no statement
level or expression level. This distinction only exists in Java
source code, and is simply a consequence of the Java syn-
tax. Thus, we can overcome this limitation by assimilating
the operator directly to the bytecode core language, using
instructions in place of the original operator (see Figure 13).

Given that the core language is enriched with constructs
of the more convenient Java language, we can also apply the
complete, mixed language to synergistic effect and assim-
ilate the operator in a more elegant fashion. Consider Fig-
ure 14, which assimilates the coalescing operator to Java
statements, embedded in a bytecode block. In addition to
these statements, we use a push pseudo-instruction to place
the lifted variable on the stack (we elaborate on the role
of the stack and the push instruction in Section 3.1). This
value forms the result of the expression, and is used as the
argument of the call to System.out.println. Like expres-
sion blocks, the bytecode fragment can contain any num-
ber of statements and a single resulting expression, making
normalization of the expression block extension to a byte-
code block trivial. As such, this pattern effectively does away
with the complications associated with statement-lifting, and
thereby simplifies the implementation of expression-level
language extensions using statements.

System.out.println(`[
push `e1;
astore lifted;

ifnull else;

push `e2;
goto endif;

else:

aload lifted;

end:

]);

Figure 13. Assimilation of the ?? operator to bytecode.

System.out.println(`[
`T lifted = e1;

`if (lifted == null) lifted = e2;

push `lifted;
]);

Figure 14. Assimilation to bytecode-embedded Java.

3. Realization of the Base Compiler
The Dryad Compiler operates by normalization of the mixed
Java/bytecode language to its core (bytecode) language. We
implemented a parser for the language as an extension of the
regular Java language, using the modular syntax definition
formalism SDF [4]. The language is normalized through
normalization rules expressed in the Stratego [6] program
transformation language. In the remainder of this section,
we give an overview of the design of the language and its
compiler.

3.1 Language Design
Key to compilation by normalization is the notion of a core
language that is – often incrementally – extended with new
abstractions to form a rich, high-level language. For the
Dryad compiler, we build upon the existing bytecode lan-
guage, an assembly-like core language, and mix it with the
standard Java language [14]. The two syntax forms are inte-
grated using the backtick operator `, which toggles the syn-
tax form of a fragment of code. Figure 15 gives an overview
of the syntax of the language. In this figure we use italics
to refer to other symbols in the syntax, and an overline to
indicate lists of symbols (e.g., T x indicates a list of type/i-
dentifier pairs). For brevity, we left out some of the more
advanced Java language constructs. For mixing of class,
method, and field declarations, the ` notation is optional, and
was also left out from this overview.

The bytecode assembly language we use shares similar-
ities with existing languages such as Jasmin [25] and its
derivatives. It provides a somewhat abstracted representation
of the underlying binary class format. For instance, it allows
the use of symbolic names rather than relative and absolute
offsets for locals and jump locations. Like Jasmin, our rep-
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General
p ::= cd Program (start symbol)
T ::= C | void | int | int | long | double | float | boolean | char | byte Types
Java
cd ::= class C extends C { fd md cd } Class declaration
md ::= C (T x) { super (e); s } | T m (T x) { s } Method/constructor declaration
fd ::= T f ; Field declaration
s ::= { s } Statement block
| e; Expression statement
| C x = e; Local variable declaration
| if (e) s else s | while (e) s | for (e; e; e) s | return; | return e; Control flow
| throw e; Throw exception
| synchronized (e) { s } Synchronization
| try { s } catch(C x) { s } Exception handling
| l: Label

e ::= x = e | x Local variables
| (T) e Cast
| e + e | e - e Basic operators
| e.m (e) Method invocation
| new C (e) Object creation

Bytecode
cd ::= classfile C extends C fields f methods md Class declaration
md ::= C (T x : T) [ I ] | <init> (T x : C) [ I ] Method/constructor declaration
fd ::= f : T Field declaration
I ::= catch (l : C) [ I ] Exception handling
| (see Figure 16) Bytecode instruction

Mixing
s ::= `I | `[I] Bytecode statement
e ::= `I | `[I] Bytecode expression
I ::= `s | `[s] | push `e Embedded Java
Tracing
s ::= trace (o) [ s ] Statement trace
e ::= trace (o) [ e ] Expression trace
I ::= trace (o) [ I ] Instruction trace
md ::= trace (o) [ md ] Method trace
o ::= s @ loc | e @ loc | I @ loc | md @ loc Trace originating code
loc ::= path:i:i Location specification

Figure 15. Syntax for the mixed Java/bytecode language.

Arithmetic Stack Arrays Control flow Comparison Conversions/truncations
add ldc c aload ifeq l lt x2i
div ldc2 w c astore ifne l gt x2l
mul new C arraylength goto l eq x2d
neg pop newarray T l: le x2f
rem pop2 multianewarray T n athrow ge i2b
sub dup return ge i2s
shl dup x1 Fields xreturn i2c
shr dup x2 getstatic C.f : T tableswitch n to n: l default: l Miscelleneous checkcast C
ushr dup2 putstatic C.f : T lookupswitch n : l default: l instanceof C
xor dup2 x1 getfield C.f : T monitorenter Invocations
and dup2 x2 putfield C.f : T monitorexit invokevirtual C.m(T : T)
or swap nop invokestatic C.m(T : T)
inc breakpoint invokeinterface C.m(T : T)
dec invokespecial C.m(T : T)

Figure 16. The (reduced) bytecode instruction set.

99



resentation allows constants to be used in-line, eliminating
the need to maintain a separate constant pool with all con-
stants and types used in a class. Still, our representation re-
mains close to the underlying binary bytecode instructions.
Most notably, it preserves the stack machine-based nature of
the instruction set. More abstract representations are for ex-
ample provided by Soot [39], but this does not match our
design goal of exposing the complete core language func-
tionality. Instead, we embrace the operand stack to provide
low-level operations, and use it for interoperability between
the two languages. Figure 15 shows the basic elements of
the bytecode language, while Figure 16 gives an overview
of the instruction set. Note that this figure shows a reduced
bytecode instruction set, using overloaded instructions, on
which we elaborate in Section 4.2. For compatibility, we also
support the complete, standard set of instructions, which can
be mapped to the reduced set.

Interoperability between Java and Bytecode Java and
bytecode have many of the same basic units of code, e.g.
classes, methods, and fields. In our mixed language, the Java
and bytecode representations of these units can be combined
arbitrarily. How to combine the two languages at a finer level
of granularity, i.e. inside method bodies, is less obvious. In
Java, a method body is a tree-like structure of statements
that may contain leafs of expression trees. Bytecode meth-
ods consist of flat, scopeless lists of instructions. Perhaps
the most elementary form of mixing at this level is to allow
bytecode fragments in place of statements, forming bytecode
statements, and vice versa. This – among other things – al-
lows statement-level separate compilation and basic inser-
tion of source code into compiled methods. At the statement
level, state is maintained through local variables and fields.
These can be shared between Java and bytecode statements,
as the language uses a common, symbolic representation for
both fields and local variables.

Expressions can be used as the operands of statements
or other expressions, passing a value to the enclosing con-
struct. Bytecode expressions are fragments of bytecode that
can be mixed into expressions. They are conceptually sim-
ilar to bytecode statements and share the same syntax for
embedding. However, as expressions, they must produce a
resulting value. At the bytecode level, such values are ex-
changed using the operand stack. For example, the load con-
stant instruction (ldc) pushes a value onto the stack, and the
add instruction consumes two values and pushes the addi-
tion onto the stack. Such instructions can be used to form a
legal bytecode expression:

int i = `[ ldc 1; ldc 2; add ];

Vice versa, the push pseudo-instruction places the value of
a Java expression onto the stack:

push `"Java" + "expression";

void locals() {

{ // Java blocks introduce a new scope

`[ ldc 1; store var ];

System.out.println(var);

}

// ‘var’ is out of scope and can be redefined

int var = 2;

}

Figure 17. Local variable scoping.

3.2 Name Management and Hygiene
Local variables shared between Java and bytecode follow the
standard Java scoping rules. Bytecode has no explicit no-
tion of declaration of variables, only of assignment (using
the store instruction). In the mixed language, the first as-
signment of a local variable is treated as its declaration, and
determines its scope (see Figure 17). In regular bytecode
there exists no notion of local variable scoping; all scopes
are lost in the normalization process. To ensure proper hy-
giene during normalization, this means that all local vari-
able identifiers – both intermediate and user-defined – need
to be substituted by a name that is unique in the scope of
the entire method. For the example in Figure 17, two unique
variables can be identified in separate scopes. After normal-
ization, these variables get a different name.

3.3 Typechecking and Verification
Typechecking is an essential part of the compilation of a
statically typed language. The Java Language Specification
specifies exactly how to perform name analysis and type-
checking of the complete Java language [14]. The analy-
ses provide type information required for the compilation
(e.g., for overloading resolution) and give feedback to the
programmer in case of errors. We employ a Stratego-based
typechecker for Java, which is implemented as a tree traver-
sal that adds semantic information to the abstract syntax tree.

The typechecker for the mixture of Java source and byte-
code is a modular extension of a typechecker for Java source
code. The source code typechecker is designed to handle
language extensions by accepting a function parameter that
is invoked for extensions of the Java source language. The
extension can inspect or modify the environment of the
typechecker, recursively apply the typechecker, or com-
pletely take over the traversal of the abstract syntax tree.
For the mixed Java/bytecode language, the extended lan-
guage constructs are the mixing constructs of Figure 15,
where bytecode is embedded in Java. If any of these con-
structs are encountered, the extension of the typechecker
takes over the traversal by switching to the bytecode ver-
ifier. The current typechecker environment is passed to
the verifier, ensuring all variables and other identifiers are
shared with the surrounding code. The verifier in turn re-
turns the resulting operand stack of the bytecode fragment.
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For bytecode expressions, these must consist of a single
type, which is passed back to the Java typechecker. Vice
versa, the bytecode verifier invokes the source code type-
checker for any embedded Java constructs, using it to re-
solve the types of embedded Java expressions and variables
declared in Java statements.

Stack-Consistency of Mixing Constructs The bytecode
verifier ensures correct stack behavior and type safety of a
program. In the mixture of Java and bytecode, we impose
specific rules on the stack behavior to ensure safe interoper-
ability and natural composability between Java and bytecode
fragments. These are verified by the bytecode verifier.

One restriction we impose on bytecode expressions is that
they must leave a single value on the stack, just like Java
expressions3. Leaving no value on the stack is considered an
error. Likewise, leaving more than one value on the stack is
considered illegal as this can lead to a stack overflow when
it is not properly cleaned up.

Unlike Java expressions, statements do not leave a value
on the stack; they compile to a sequence of stack-neutral
bytecode instructions. That is, they may use the stack for
intermediate values during evaluation, but must restore it
to its original height afterwards. This ensures that all Java
statements can safely be placed in a loop construct, with-
out the risk of a stack overflow or underflow. Even more so,
the JVM actually requires that methods have a fixed max-
imum stack height, disallowing loops with a variable stack
height [22]. For compound statements (e.g., for, while),
stack-neutrality extends to the contained statements: the in-
put stack of all nested statements must be the same as the
stack outside the containing statement. This restriction goes
hand in hand with the JVM restriction that at any point in a
method, the types of the values on the stack must statically
be known, and must be the same for all incoming edges of
the control flow graph. Any other jumps to a location are
considered illegal. The restriction can always be satisfied on
the statement level based on the property of stack-neutrality.
A jump from one statement to another is therefore always
legal. To preserve this property in the mixed language, we
place the same restriction of stack-neutrality on bytecode
statements: only bytecode sequences that restore the stack
height are legal bytecode statements. This ensures that frag-
ments of Java and bytecode can be composed naturally with-
out risk of stack inconsistencies, and ensures support for ar-
bitrary control flow between Java and bytecode statements.

Verifier Implementation The JVM specification [22] in-
cludes a description of how a bytecode verifier should oper-
ate. It describes the process as a fix-point iteration, where a
method’s instructions are iterated over a number of times un-
til all possible execution paths have been analyzed. Because
of restrictions on the form of a method and its instructions,

3 Actually, void method invocations are an exception to this, but these
cannot be nested into other expressions.

this is a straightforward process. One restriction is that for
all instructions the effect on the stack can be statically de-
termined. For instance, for a method invocation instruction,
this means that it must specify the arguments it takes from
the stack and what the return type is. This also means that
the verification can be done in an intraprocedural setting, us-
ing a static, global environment. This allows it to be tightly
integrated into the Java source code typechecker, as it can be
used to verify individual fragments at a time.

We implement our analysis using a monotone frame-
work [18, 1]. This representation allows a generic formu-
lation of such analyses using a specific set of operators and
constants for each framework instance. Bytecode verifica-
tion is a forward data-flow analysis, and assumes an empty
stack at the beginning of a method. The operators that de-
termine the types on the stack through fix-point iteration are
defined as follows:

• The transfer function determines the resulting stack of an
instruction, given the input stack. For instance, for an ldc
instruction, a single value is loaded onto the stack.
• The join operation merges the stack at branch targets

(i.e., labels and exception handlers), unifying the types
of the stack states if they are compatible (e.g., String
and Integer unify to the Object type).

3.4 Source Tracing
During compilation, code often undergoes multiple normal-
ization steps. If there are any errors in any of these steps,
they should reflect the originating source code, and not the
intermediate code. To maintain this information, we intro-
duce source tracing information that indicates the source of
a fragment of code, in the form of a path and location of the
originating file and an abstract syntax tree reference. Source
tracing is explicitly available as a language feature, using
the trace keyword (see Figure 15). This ensures maximal,
source-level interoperability with other tools that may exist
in the compilation chain. Consider Figure 18, which shows
a class file compiled using the traits extension. In addition to
language-level support, we provide an API to transparently
include this information in the result of normalization rules
in Stratego. Using this facility, extensions of the compiler
can fall back on the error reporting and checking mecha-
nisms already provided by the base compiler, and may catch
these errors or to improve the user experience.

Source tracing information is also used to generate de-
bugging information in the produced Java class file. This
takes the form of a table that maps instruction offsets to orig-
inal source file locations, and enables stepping through the
code using a debugger, as well as accurate position informa-
tion in run-time exceptions.

3.5 Data-Flow Analysis on the Core Language
Leveraging the bytecode verifier and the source tracing fa-
cility, we implemented analyses such as unreachable code
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classfile Shape

methods

trace (void draw() {...} @ TDrawing.java:2:2) [

public draw(void) [ ... ]

]
...

trace (... getVertices() {...} @ Shape.java:9:2)

[

public getVertices(void) [ ... ]

]

Figure 18. Compiled methods with source tracing.

analysis and checking for definite assignment at the byte-
code level. By performing these analyses on the core lan-
guage, we can formulate them as a monotone framework in-
stance, or make use of the information already provided by
the verifier. Furthermore, dealing with a normalized form of
the language, these analyses have fewer constructs to deal
with, reducing their complexity.

Reachability of statements can be determined by use of
the regular bytecode verifier: it returns a list of stack states,
leaving the stack states of all unreachable instructions unini-
tialized. Using source tracing information, the Java state-
ments that generated such code (which is illegal in Java) can
be reported as unreachable. For testing definite assignment,
we formulated another monotone framework instance that
maintains a list of all assigned variables, matching against
the load and store instructions. Through iteration it deter-
mines whether or not variables are assigned before use, and
if variables marked final are not assigned more than once.
While the core language has no direct notion of final vari-
ables, this information can be retrieved using the method’s
source tracing information.

In addition to verification, we applied these analysis tech-
niques for optimizations on the core language, including
dead code elimination and peephole optimizations. Simi-
larly, other optimizations such as constant propagation can
be implemented at this level.

4. Normalization Rules for Code Generation
Using normalization rules, high-level language constructs
can be rewritten to lower-level equivalents, e.g. from con-
structs of language extensions to the Java/bytecode lan-
guage, and then to the core bytecode language. We express
these rules as Stratego rewrite rules, which take the form

L: p1 → p2 where s

where L is the name of the rule, p1 is the left-hand side
pattern to be matched against, and p2 is the result of the
rewrite rule. The where clause s may specify additional
conditions for the application of the rule, or may declare
variables to be used in the result. Using the technique of
concrete syntax embedding, Stratego rewrite rules may use
the concrete syntax of the language being transformed as

normalize-finally:

|[ synchronized (e) { bstm∗ } ]| →
|[ Object locked = e;

try {

`[ push `locked; monitorenter ];

bstm∗
} finally {

`[ push `locked; monitorexit ];

}

]|

Figure 19. Normalization of the synchronized statement.

patterns [43, 6]. These concrete syntax fragments are parsed
at compile-time and converted to equivalent match or build
operations using the abstract syntax tree. These patterns are
typically enclosed in “semantic braces”:

normalize-if:

|[ if (e) s ]| →
|[ if (e) s else ; ]|

this rule normalizes the basic, single-armed if statement to
the more general two-armed if statement, with the empty
statement in the else clause. This normalization ensures
that other rules only have to deal with the latter form.

4.1 Mixed Language Normalization
Rather than directly normalizing from high-level language
constructs to bytecode, this is often done through a series of
small normalization steps. Often, these are rules that produce
a mixture of Java and bytecode, which is further normalized
in later steps. Iterative rule application and leveraging the
primitives made available in the mixed Java/bytecode lan-
guage make it possible to normalize the complete language
using relatively small steps that focus on a single aspect.

Consider Figure 19, which demonstrates a normalization
rule for the standard Java synchronized statement. It is
rewritten to a mix of more low-level Java statements and
the monitorenter and monitorexit unbalanced synchro-
nization instructions. The resulting fragments can in turn be
normalized to core language constructs themselves.

We apply normalization rules in both the core compiler
as well as in the language extensions. For example, in Sec-
tion 2.2 we discussed the extension of Java with traits, map-
ping trait classes to Java abstract classes for separate com-
pilation. Consider Figure 20, which illustrates this map-
ping by means of a normalization rule. This rule makes use
of a where clause, and depends on two helper functions:
trait-name, which determines and registers a new name
for the resulting abstract class, and trait-methods, which
determines the set of methods to be included. Given the map-
ping of traits to regular Java classes, the core normalization
rules can proceed to normalize the result further down to
bytecode.
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normalize-trait:

|[ trait x trait∗ { method1∗ } ]| →
|[ abstract class y { method2∗ } ]|

where

y := <trait-name > x

method2∗ := <trait-methods > (method1∗,
trait∗)

Figure 20. Normalization of traits to abstract classes.

4.2 Pseudo-Instruction Normalization
The JVM supports over two hundred instructions, ranging
from very low-level operations, such as manipulation of
the stack, to high-level operations, such as support for syn-
chronization and arrays. Many of these instructions are spe-
cialized for specific types, such as the iadd and fadd in-
structions that respectively add two integers or two floats.
Rather than requiring the code generator to select the proper
specialization of <T> add, we introduce overloaded pseudo-
instructions to defer this to the final step of the compilation.
This simplifies the implementations of specific language ex-
tensions, as they do not have to reimplement this specializa-
tion process.

The pseudo-instructions form a reduced set of only 67 es-
sential instructions (see Figure 16). These are normalized to
regular bytecode instructions, based on the type information
provided by the verifier. For this, the verifier is extended with
a transformation operator, which uses the type information
provided by the transfer function of the verifier to replace
all overloaded instructions with type-specific, standard byte-
code instructions.

Consider Figure 21, which illustrates how very different
bytecode instructions must be generated for identical Java
expressions if they operate on different types. Instructions
such as iload and iadd have a type prefix, and the dup
or dup2 instruction depend on the number of words that a
value occupies (i.e., two for long values). In the reduced set,
identical instructions can be used for many such patterns,
thus simplifying normalization rules from Java (or another
language) to the instruction set, and reducing their total
number.

5. Discussion
Compilation by Normalization in Practice From an exter-
nal view, the Dryad Compiler has no discernible stages, and
simply normalizes the input code to resulting code that can
be normalized again. At each normalization step, the trans-
formed code forms a valid Java/bytecode program. This de-
sign enables extensions – as well as built-in features – to
make use of a wider range of language constructs, and pre-
vents scattering their implementation across different compi-
lation stages. Furthermore, it allows for different (separate)
compilation scenarios than possible with conventional open
compilers.

Java Reduced instruction set Regular bytecode
intVar++ load intVar iload 1

dup dup

inc iconst 1

iadd

store intVar istore 1

longVar++ load longVar lload 1

dup dup2

inc lconst 1

ladd

store longVar lstore 1

Figure 21. Instructions generated for identical Java expres-
sions of type int and long.

Still, the internal architecture of the Dryad Compiler does
employ separate, discernible components. For instance, it
employs a (global) semantic analysis phase, based on the
Dryad typechecker component. As such, it does not con-
form to what may be an idealized image of how a normal-
izing compiler should work: by pure, iterative application of
declaratively defined normalization rules. As it is, the Dryad
Compiler uses strategies to maintain a degree of control
over the application order of normalization rules. To simplify
their implementation, the rules are formulated without spe-
cial logic for preserving the semantic information collected
in the analysis. This means that in some cases, the analyzer
must be reapplied. While this may not be ideal, this architec-
ture does not hinder the applications presented here: for the
extensions, the Java/bytecode language acts as the interface
of the compiler. The internal implementation of the com-
piler, how this language is normalized, and how this design
may (and likely will) change in the future, is of no concern
to the developer of an extension.

Core Language-Based Analysis We perform a number of
data-flow analyses and optimizations on programs after they
have been normalized to the core language. By doing these
at this level they can be applied independently of the source
language. The analyses have fewer constructs to deal with
than for source code, reducing their complexity. Still, reduc-
ing a program to the bytecode form can also mean a loss of
precision, due to the missing high-level structure and the re-
duced size of the code window used by transfer functions.
Logozzo and Fähndrich [23] offer a discussion comparing
the relative completeness of either approach.

Composition of Language Extensions Modular definition
of language extensions aids in the composability with other
extensions, possibly developed by different parties. Ideally,
these can be imported into a language without requiring
any implementation level knowledge of the extensions. At
the syntax level, this can be achieved using a modular syn-
tax definition formalism such as SDF [4]. On the seman-
tic level, the primary determinant of the compositionality of
extensions is the type of analysis and transformations that
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are performed (global or local). For global transformations,
an ordering of application must be determined, which re-
quires implementation-level knowledge. Thus, composable
language extensions should use primarily local transforma-
tions; composition of global transformations is an orthogo-
nal issue. Using small normalization steps, facilitated by ex-
pression blocks, pseudo-instructions, and the increased ex-
pressivity of the general Java/bytecode language, many ex-
tensions can be expressed using local transformations.

6. Related and Future Work
Compiler Extension Extensible compilers, such as the
JastAdd Extensible Java compiler [13], ableJ [42], Poly-
glot [28], and OpenJava [36] provide a foundation for com-
pilation of language extensions. Polyglot, ableJ, and Open-
Java follow the front-end extension approach; they offer an
extensible semantic analysis stage and aid in projection to
the base language. JastAdd on the other hand provides its
own, modular back-end. Our approach does not preclude the
use of these tools, but can add to them by offering at once
the Java language for projection and direct use of the un-
derlying bytecode primitives or inclusion of compiled class
fragments.

Forwarding, as supported by ableJ, avoids the need to im-
plement full semantic analysis for a language extension [42,
41]. Instead, forwarding allows the metaprogrammer to de-
fine the projection of a language construct to the base lan-
guage, and by default applies semantic analysis over the for-
warded program fragment. Our work is related to forward-
ing, as we similarly define a mapping from a source lan-
guage to a base language, using normalization rules. Seman-
tic analysis can be performed on the projected code, and any
errors can be reported in reference to the user code using
source tracing. Unlike in ableJ, we introduce core language
constructs into the source language, to increase its expres-
sivity and to facilitate normalization to this core language
form.

Macro-based systems, such as JSE [3] and the Jakarta
Tool Suite [33] implement direct projection to a base lan-
guage, forgoing semantic analysis. This can lead to confus-
ing error messages in references to locations and constructs
in the generated code. We support semantic analysis on the
source language using an extensible typechecker and veri-
fier, and provide source tracing facilities to ensure any errors
on code resulting from transformations can be traced back to
user code.

Source tracing is a technique related to origin track-
ing [40], which maintains the origins (i.e., source terms
and positional information) of terms during rewriting. We
extend this notion by defining language constructs to main-
tain and share this information at the source level, to help
interoperability between tools and simplify the internal rep-
resentation.

Language Composition A similarity can be drawn be-
tween the mixed Java/bytecode language presented here and
existing languages such as C++ and Ada that allow inline
assembly code languages. These too can be used for op-
timizations or obfuscation and provide access to low-level
operations. Assembly code, however, is a representation of
instructions for a specific CPU architecture, and therefore
is much more low-level and less safe than bytecode. This
makes it more difficult to use it for composition of source
and compiled code.

The Java/bytecode language also shows similarities with
the Jeannie language [17], which integrates Java with C
code, compiling to code that makes use of the Java Native
Interface (JNI) [21], the JVM’s standard foreign function in-
terface. The C language can be used for accessing platform
functionality or (legacy) libraries, but does not actually form
the core language of the Java platform. Similar to the Dryad
Compiler, Jeannie performs semantic analysis on the com-
bined language, and introduces a number of bridging con-
structs for conversions and interoperability between the two
constituent languages.

Different Platforms We have applied the compilation by
normalization architecture for the Java platform. Java pro-
vides a safe, mature, and ever-evolving platform for develop-
ing applications, and has been frequently used to host other
languages and language extensions [15, 24, 32]. A similar
architecture can be realized for other platforms based on a
bytecode language. For instance, .NET may be an interest-
ing case given it was designed from the ground up to host
multiple languages, and includes support for unsafe code,
which allows direct manipulation of object pointers. Other
platforms provide a more high-level intermediate language,
such as the Glasgow Haskell Compiler CORE language [31].
CORE is not a strict subset of the Haskell language and can-
not be directly compiled [38], but this and similar languages
make good candidates for use as a core language that is
grown to a more extensive, (not necessarily existing) high-
level language, by introducing new abstractions, while pre-
serving the core functionality.

Other Language Extensions We presented a number of
compiler extensions, demonstrating how the Dryad Com-
piler can facilitate their implementation. Future work could
include other extensions, such as adding full support for
aspect-oriented programming (AOP) [20], building upon the
implementation of open classes (i.e., intertype declarations
in AOP) and composition of code at the statement and ex-
pression level. Full aspect weaving can be performed by
composition of compiled classes with aspect source code,
or vice versa. A related design is used for the AspectBench
Compiler (abc) [2], which applies aspect weaving on the
Jimple language, a three-address (stackless) representation
of bytecode. The abc compiler uses Soot [39] to (de)compile
Java and bytecode to Jimple. Thereby they avoid some of the
complexities associated with bytecode-level weaving. Using

104



the Java/bytecode language instead would enable the direct
insertion of regular Java code into class files for both ad-
vice and any dynamic checks or other wrapping code that
accompanies it. By providing typechecking and verification
for the combined language, as well as the guarantee of stack-
neutrality of inserted statements, we provide the same level
of safety as is possible with weaving using Jimple. Similar
techniques can be used in the implementation of annotation
processing tools (such as Java APT [35]), which typically
operate purely based on source code.

There is a growing interest in running dynamic pro-
gramming languages on the JVM. These compilers, such
as Jython [30] for the Python language, typically compile
to Java source code. Using the Dryad Compiler as a basis,
such compilers can make use of specific bytecode features
and optimizations, such as the newly considered dynamic in-
vocation instruction.4 Similarly, other Java code generators
could be retrofitted to generate selected bytecode features.
The F2J Fortran compiler, for instance, used to generate Java
source code, before it was re-engineered to directly generate
bytecode instead, to support goto instructions and specific
optimizations [32]. JCilk also generates Java code, to assim-
ilate an extension with fork-join primitives and exception
handling for multithreaded computations [10]. Similar to
the problems with implementing the yield statement as a
source-to-source transformation (Section 2.3), this signif-
icantly complicates the control flow semantics. However,
rather than directly generating bytecode for the complete
JCilk language, the current implementation depends on a
modified version of the GNU Compiler for Java as its back-
end. It would be straightforward to use the Dryad Compiler
instead, making use of the mixed language and introducing
support for source tracing.

Java’s source model of single inheritance with interfaces
does not always match that of a given language that is in-
tended to target the JVM. For instance, a restriction of Java
interfaces is that only one method with a given signature
may exist. This renders interfaces incompatible if they define
methods with the same signature but with a different return
type. For generated code, such as interfaces generated from
annotations, this can be a restricting or incalculable factor.
At the bytecode level, this restriction does not exist. Addi-
tionally the synthetic modifier, used for instance on byte-
code methods of inner classes, can be used to mark methods
inaccessible from user code (JVM Spec. [14], §4.7.6). It can
be used to hide multiple methods with the same signature,
and can enable friend class semantics for generated code.

7. Conclusions
To increase programmer productivity, language extensions,
both domain-specific and general-purpose, have been and
continue to be developed. These may generate source code
or bytecode; either approach has its advantages. Mixing

4 JSR 292: http://www.jcp.org/en/jsr/detail?id=292.

source code and bytecode, a new language can be formed
that has a synergistic effect, resulting in a language that at
once provides the low-level expressivity of bytecode and the
convenience and familiarity of Java. The combined language
allows rapid development of language extensions through
normalization steps that can remain loosely coupled from
the base compiler. Using intermediate forms such as ex-
pression blocks and pseudo-instructions, these steps remain
relatively small and maintainable.

Mixing source and bytecode opens the doors for new,
more fine-grained forms of separate compilation, providing
a foundation for composition of source and bytecode classes
up to instruction- and expression-level precision. By use of
source tracing, these composed fragments of code can be
traced back to their original source files, enabling accurate
location information for error messages and debugging.
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