
Building Program Optimizers with Rewriting Strategies*

Eelco Visserl, Zine-el-Abidine Benaissa’, Andrew Tolmach1T2
Pacific Software Research Center

r Dept. of Comp. Science and Engineering, Oregon Graduate Institute, P.O. Box 91000, Portland, Oregon 97291-1000, USA
z Dept. of Computer Science, Portland State University, P.O. Box 751, Portland, Oregon 97207 USA

visserOacm.org, benaissaOcse.ogi.edu, aptQcs.pdx.edu

Abstract

We describe a language for defining term rewriting strate-
gies, and its application to the production of program op-
timizers. Valid transformations on program terms can be
described by a set of rewrite rules; rewriting strategies are
used to describe when and how the various rules should be
applied in order to obtain the desired optimization effects.
Separating rules from strategies in this fashion makes it eas-
ier to reason about the behaviof of the optimizer as a whole,
compared to traditional monolithic optimizer implementa-
tions. We illustrate the expressiveness of our language by
using it to describe a simple optimizer for an ML-like inter-
mediate representation.

The basic strategy language uses operators such as se-
quential composition, choice, and recursion to build trans-
formers from a set of labeled unconditional rewrite rules.
We also define an extended language in which the side-
conditions and contextual rules that arise in realistic opti-
mizer specifications can themselves be expressed as strategy-
driven rewrites. We show that the features of the basic and
extended languages can be expressed by breaking down the
rewrite rules into their primitive building blocks, namely
matching and building terms in variable binding environ-
ments. This gives us a low-level core language which has a
clear semantics, can be implemented straightforwardly and
can itself be optimized. The current implementation gener-
ates C code from a strategy specification.

1 Introduction

Compiler components such as parsers, pretty-printers and
code generators are routinely produced using program gen-
erators. The component is specified in a high-level lan-
guage from which the program generator produces its imple-
mentation. Program optimizers are difficult labor-intensive
components that are usually still developed manually, de-
spite many attempts at producing optimizer generators
(e.g., [19, 12, 28, 25, 18, 111).

‘This work was supported. in part. by the US Air Force Materiel
Corrmar~I under contract F19628-93-C-0069 and by the National Sci-
ence Foundation under grant CCR-9503383.

A program optimizer transforms the source code of a
program into a program that has the same meaning, but is
more efficient. On the level of specification and documenta-
tion, optimizers are often presented as a set of correctness-
preserving rewrite rules that transform code fragments into
equivalent more efficient code fragments (e.g., see Table 5).
This is particularly attractive for functional language com-
pilers (e.g., [3, 4, 241) that operate via successive small trans-
formations, and don’t rely on analyses requiring significant
auxiliary data structures. The paradigm provided by con-
ventional rewrite engines is to compute the normal form of
a program with respect to a set of rewrite rules. However,
optimizers are usually not implemented in this way. In-
stead, an algorithm is produced that implements a strategy
for applying the optimization rules. Such a strategy con-
tains meta-knowledge about the set of rewrite rules and the
programming language they are applied to in order to (1)
control the application of rules; (2) guarantee termination
of optimization; (3) make optimization more efficient.

Such an ad-hoc implementation of a rewriting system
has several drawbacks, even when implemented in a lan-
guage with good support for pattern matching, such as ML
or Haskell. First of all, the transformation rules are em-
bedded in the code of the optimizer, making them hard to
understand, to maintain, and to reuse individual rules in
other transformations. Secondly, the strategy is not speci-
fied at the same level of abstraction as the transformation
rules, making it hard to reason about the correctness of the
optimizer even if the individual rules are correct. Finally,
the host language has no awareness of the transformation
domain underlying the implementation and can therefore
not use this domain knowledge to optimize the optimizer
itself.

It would be desirable to apply term rewriting technol-
ogy directly to produce program optimizers. However, the
standard approach to rewriting is to provide a fixed strategy
(e.g., innermost or outermost) for normalizing a term with
respect to a set of user-defined rewrite rules. This is not
satisfactory when-as is usually the case for optimizers-
the rewrite rules are neither confluent nor terminating. A
common work-around is to encode a strategy into the rules
themselves, e.g., by using an explicit function symbol that
controls where rewrites are allowed. But this approach has
the same disadvantages as the ad-hoc implementation of
rewriting described above: the rules are hard to read, and
the strategies are still expressed at a low level of abstraction.

In this paper we argue that a better solution is to use
explicit specification of rewriting strategies. We show how

13

program optimizers can be built by means of a set of labeled
rewrite rules and a user-defined strategy for applying these
rules. In this approach transformation rules can be defined
independently of any strategy, so the designer can concen-
trate on defining a set of correct transformation rules for a
programming language. The transformation rules can then
be used in many independent strategies that are specified
in a formally defined strategy language. Given such a high-
level specification of a program optimizer, a compiler can
generate efficient code for executing the optimization rules.

Starting with simple unconditional rewrite rules as
atomic strategies we introduce in Section 2 the basic com-
binators for building rewriting strategies. We give examples
of strategies and define their operational semantics. In Sec-
tion 3 we explore optimization rules for RML programs, an
intermediate format for ML-like programs (261. This ex-
ample shows that there is a gap between the unconditional
rewrite rules used in rewriting and the transformation rules
used for optimization. For this reason, we need to enrich
rewrite rules with features such as conditions and contexts.
In order to avoid complicating the implementation by many
ad-hoc features, we refine our language by breaking down
rewrite rules into the notions of matching and building terms
(Section 4). This gives us a low-level core language which
has a clear semantics, can be implemented straightforwardly
and can itself be optimized. The current implementation
generates C code from a strategy specification. In Section 5
we show how this core language can be used to encode high-
level rules with conditions and contexts. In Section 6 we
use the resulting language to give a formal specification of
the RML rules presented earlier. Section 7 describes the
implementation and Section 8 discusses related work.

2 Rewriting Strategies

A rewriting strategy is an algorithm for applying rewrite
rules. In this section we introduce the building blocks for
specifying such algorithms and give several examples of their
application. The strategy language presented in this section
is an extension of previous work [20] of one of the present
authors.

2.1 Terms

We will represent expressions in the object language by
means of first-order terms. A first-order term is a variable,
a constant, a tuple of one or more terms, or an application
of a constructor to one or more terms. This is summarized
by the following grammar:

t::=xIc)(t1,..., tn)If(tl)...) tn)

where 2 represents variables (lowercase identifiers), c rep
resents constants (uppercase identifiers or integers) and f
represents constructors (uppercase identifiers). We denote
the set of all variables by X, the set of terms with variables
by T(X) and the set of ground terms (terms without vari-
ables) by T. Terms can be typed by means of signatures.
For simplicity of presentation, we will consider only untyped
terms in this paper until Section 6. For now, we assume that
a signature C is a function mapping operators to their ari-
ties. We will also use a shorthand notation for lists. A term
[tl, tz, . , tn] denotes a term

Cons(tl, Cons(t2,. . . , Cons(t,,Nil)))

Constants are considered to be constructors with zero-arity
and tuples are considered to be constructed with a special
constructor for each arity.

2.2 Rewrite Rules

A labeled rewrite rule has the form ! : 1 -+ r, where e is a
label and 1, T are first-order terms. For example, consider a
calculus of lists constructed with Cons and Nil and Boolean
values True and False that defines transformation rules for
the constructor Member as:

Meml : Member(z, Nil) -+ False

Mem2 : Member(z, Cons(z, ys)) 3 True

Mem3 : Member(z, Cons(y, ys)) --f Member(s, ys)

A rewrite rule specifies a single step transformation of a
term. For example, rule Mem3 induces the following trans-
formation:

Member (A, Cons(B, Cons(A, Nil)))

q Member(A, Cons(A, Nil))

In general, a rewrite rule defines a labeled transition re-
lation between terms and reducts, as formalized in the op-
erational semantics in Table 1. A reduct is either a term or
t, which denotes failure. The first rule defines that a rule e
transforms a term t into a term t’ if there exists a substitu-
tion 0 mapping variables to terms such that t is a o-instance
of the left-hand side 1 and t’ is a cr-instance of the right-hand
side T. The second rule states that an attempt to transform
a term t with rule e fails, if there is no substitution u such
that t is a o-instance of 1. For instance, in our membership
example we have

Member(A, Cons(B, Cons(A, Nil))) 5 7

Note that a rewrite rule applies at the root of a term. Later
on we will introduce operators for applying a rule to a sub-
term.

t e’i+r> t’ if 30 : u(1) = t A g(r) = t’

t e”+r>t if 7% : a(l) = t

Table 1: Operational semantics for unconditional rules.

2.3 Reduction-Graph Traversal

The reduction graph induced by a set of rewrite rules is the
transitive closure of the single step transition relation. It
forms the space of all possible transformations that can be
performed with those rules.

For instance, one path in the reduction graph induced
by the rules Meml and Mem3 is the following:

Member(A, Cons(B, Cons(C, Nil)))

z Member(A, Cons(C, Nil))

a Member(A, Nil)

a False

14

w(s) t----k t’

(a) positive rules

t-At
t-t
t 4 t’
t=%t

t-%‘r t-&t t’-%t
t-=+-r t-t

t-&t t-%t
t s1++2 t-r

t-t t%t
t ~l+l-~Z b-7

t s[+:=pz(s)] tt
t w(s) rt I

(b) negative rules

Table 2: Operational semantics for basic combinators.

A strategy is an algorithm for exploring the reduction
graph induced by a set of rules. Rewrite rules are atomic
strategies that describe a path of length one. In this section
we consider combinators for combining rules into more com-
plex strategies. The operational semantics of these strategy
operators is defined in Table 2.

The fundamental operation for compounding the effects
of two transformations is the sequential composition 91;s~ of
two strategies. It first applies si and, if that succeeds, it ap-
plies 92. For example, the reduction path above is described
by the strategy Mem3 ; Mem3 ; Meml.

The non-deterministic choice SI +s2 chooses between the
strategies si and s2 such that the strategy chosen succeeds.
For instance, the strategy Meml + Mem2 applies either Meml
or Mem2. Note that due to this operator there can be more
than one way in which a strategy can succeed.

With the non-deterministic choice operator the program-
mer has no control over which strategy is chosen. The deter-
ministic or left choice operator si + 92 is biased to choose
its left argument fist. It will consider the second strategy
only if the first does not succeed. This operator can be used
to give higher priority to rules. For example, rule MemP and
Mem3 are overlapping rules. To express that Mem3 should be
applied only after it is certain that Mem2 does not apply, the
strategy

(Meml + Mem2) +t Mem3

can be used.
Strategies that repeatedly apply some rules can be de-

fined using the recursion operator px(s). For instance, the
strategy

p((Meml + Mem2) +t (Mem3 ; z))

repeatedly applies rule Mem3 (if possible) until either rule
Meml or Mem2 is applicable. The strategy fails if neither Meml
nor MemZ is ever applicable. (Note that ; has higher prece-
dence than + and +k. Therefore, (Meml + Mem2) + (Mem3 ; z)
could also be written as (Meml + Mem2) + Memd ; z.)

The identity strategy e always succeeds. It is often used
in conjunction with left choice to build an optional strategy:
s +t e tries to apply s, but when that fails just succeeds with
e. The failure strategy 6 is the dual of identity and always
fails.

The strategy tests can be used to test whether a strat-
egy s would succeed or fail without having the transforming
effect of s. The negation 7s of a strategy s is similar to
test, but tests for failure of s. We will see examples of the
application of these operators in Section 6.

Redex and Normal Form We will call a term an e-redex
if it can be transformed with a rule e, otherwise it is in !-
normal form. We will generalize this terminology to general
strategies, i.e., if t -4 t’, then t is an s-redex and if t 4 t,
then t is in s-normal form.

Strategy Definitions In order to name common patterns
of strategies we will use strategy definitions. A definition
‘p(Zl,. . . ,x,) = s introduces a new n-ary strategy operator
cp. An application ‘p(si , . . . , sn) of cp to n strategies denotes
the instantiation s[zi := si . . . xn := sn] of the body s of
the definition. Strategy definitions are not recursive and
not higher-order, i.e., it is not possible to give a strategy
operator as argument to a strategy operator. An example of
a common pattern is the application of a strategy to a term
as often as possible. This is expressed by the definitions

repeat(s) = pz((s ; CC) +t- E)

repeatl(s) = s; repeat(s)

The strategy repeat(s) applies s as many times (zero or
more) as possible. The strategy repeatl(s) is like repeat,
except that it must succeed at least once. Using repeat, we
can define the strategy repeat ((Meml + Mem2) +t Mem3) which
is equivalent to pz((((Mem1 + Mem2) +t Mem3) ; z) tf e). It
applies rules Meml, Mem2 and Mem3 as often as possible and
will always succeed.

1.5

7 ti 4 ti

f(h,, . .) ti, ‘. , tn) a0 f(h,. . .) t;, . . , tn)

t1 At; . . t, Sn, t:,

f(tl,. .) tn) f(s13-3sn)+ f(t;, . . ,t’n)

ti -4 t’i

f(tl)“‘) ti ,.‘. ,tn)%f(tl ,... ,t:)“. ,tn)

t1 -% t; . . t, -% t:,

f(b)... ,tn)Sf(t; ,... ,tg

3jvi : i,j E {l..n} A P(ti) =

{

ti if ti -% 6
ti if ti --% t A i # j

fttl,. , t,) % f(P(tl), .) P&L))

(a) positive rules

Table 3: Operational semantics for term traversal operators
all rules n E C(f), m s C(g) and 1 _< i _< n.

Backtracking Operationally, the non-deterministic
choice operator SI + sz randomly chooses one strategy to
apply and if that fails backtracks and attempts to apply
the other one. However, backtracking is local only; if the
first strategy succeeds the second will never be attempted.
If both s1 and sz succeed, then the order in which they
are tried can affect the outcome of the larger strategy
that encompasses the choice. For example, suppose that
t -% t’ and t -% t”, but t’ “3, t and t” a t”‘. Then

either t (~l+~zh p, or t (sl+Q)iR3 f depending on the

choice made for s1 + ~2. The left choice operator +t is
also a local backtracking operator, but the order in which
the alternatives are tried is fixed. Therefore, a strategy
composed without + is deterministic and either fails or
succeeds.

2.4 Term Traversal

The operators introduced above apply strategies to the root
of a term. This is not adequate for achieving all transfor-
mations. For instance, consider the extension of our list
calculus with a concatenation operator Cone:

Cncl : Conc(Ni1, zs) -+ xs

Cnc2 : Conc(Cons(z, zs), ys) + Cons(z,Conc(zs, ys))

Application of rule Cnc2 leads to an opportunity to apply
these rules below the root of the term. For example, consider
the reduction path:

Cone (Cons (1, Nil) , Cons (2, Nil))

% Cons(l, Conc(Ni1, Cons(2, Nil)))

z(cncl)> Cons(l, Cons(2, Nil))

The second step in this reduction is an application of rub
Cncl to the second argument of the Cons.

fV1 ,... ,tn)3t ifi>n

ti 47

f(tl)... ,ti)‘.. ,tn) i(s),1.

ti 41‘

L

(b) negative rules

These rules are schemata that define a rule for each f E C. In

In general, we want to be able to apply transformation
rules at arbitrary depth in a term. For this purpose we
introduce five basic operators for applying a transformation
to the children of a constructor. The operational semantics
of these operators is defined in Table 3. In conjunction with
the operators defined above, these are sufficient to define a
wide range of full term traversals.

The fundamental operation for term traversal is the ap-
plication of a strategy to a specific child of a term. The
strategy i(s) applies strategy s to the i-th child. If it suc-
ceeds the child is replaced with the result of the transforma-
tion. If it fails the application of i(s) fails. It also fails if i
is greater than then the arity of the constructor of the term
to which it is applied. We saw an example above, Z(Cncl)
applies rule Cncl to the second argument of the root.

Congs-uence operators specify application of strategies to
the children of terms constructed with a specific constructor.
For each term constructor f E dam(C) there is a correspond-
ing strategy operator f with arity C(f). If sl,...,s~(f) are
strategies then f(sl, SC(~)) is the strategy that applies
only to terms t with outermost constructor f and applies
each si to the i-th child of t. For example, the strategy
Cons(sl,sz) applies to Cons terms and applies s1 to the
head of the list and s2 to the tail. In the example above
Cons(c,Cncl) is equivalent to 2(Cncl). To apply the con-
catenation rules until the application of Cone is eliminated
we can use the strategy

px(Cnc1 + (Cncl ; Cons(e, x)))

The strategy either terminates with rule Cncl or else applies
rule Cnc2 and then recursively applies the strategy to the
Cone created in the tail of the list. Another example of
the use of congruence operators is the strategy map(s) that
applies a strategy s to each element of a list:

map(s) = pz(Nil+ Cons(s,z))

16

The path and congruence operators are useful for con-
structing strategies for a specific data structure. To con-
struct more general strategies that can traverse arbitrary
data structures we introduce the operators Cl(s), O(s) and
q . These operators are defined generically on all terms over
a signature C.

The strategy U(s) applies s to each child of the root and
succeeds if s succeeds for each child. It fails if s fails for
one or more of the children. In case of constants, i.e., con-
structors without arguments, the strategy always succeeds,
since there are no children. (As a consequence the strat-
egy O(6) succeeds exactly on constants.) This allows us to
define very general traversal strategies. For example, the
following strategies apply a strategy s to each node in a
term, in preorder (top-down), postorder (bottom-up) and a
combination of pre- and postorder (downup):

topdown = pz(s ; Cl(e))

bottomup = ~z(O(Z) ; s)

downup = ~Z(S ; U(Z) ; s)

For example, the strategy topdown((Cnc1 + Cnc2) + e) tries
to apply the rules Cncl and Cnc2 everywhere in a term in a
topdown traversal. It always succeeds because of the escape
+e.

The strategy O(s) is the dual of O(s); It applies s non-
deterministically to one child for which it succeeds. It fails
if there is no child for which it succeeds. In particular, it
fails for constants, since they have no child for which s can
succeed. As a consequence the strategy O(E) succeeds ex-
actly on non-constants. The duals of the pre- and post-order
traversals defined above apply a strategy s exactly once in a
term while traversing the term in a top-down or bottom-up
order:

oncetd(s) = ,KZ(S it O(x))

oncebu(s) = p~(O(x) et s)

The strategy oncetd(s) first tries to apply s at the root
and terminates if that succeeds. Otherwise if s fails on the
root, it tries to apply the strategy to one of the children.
The strategy oncebu(s) first tries to find an application of
s below the root. If that fails s must succeed at the root.
For instance, the strategy oncetd(Cncl+ Cnc2) succeeds if it
finds an application of either rule Cncl or Cnc2 in the term
and fails otherwise.

Finally, m(s) is a hybrid of O(s) and O(s) that applies s
to some children. It is like 0 because it has to succeed for
at least one child and it is like 0 because it applies to all
children. The difference from 0 is that it does not have to
succeed for all children. The analogue of oncebu with gS is
the strategy somebu, defined as:

somebu(s) = ~x(~(x) + s)

Where oncebu finds a single subterm for which s succeeds,
somebu finds as many subterms as possible to which s ap-
plies, but at least one. However, as soon as s succeeds for a
subterm t’ of t, s is not applied to any of the nodes in the
spine from t to t’. A version of this strategy that finds still
more subterms to apply to is manybu, defined as:

manybu(s) = px((Kl(x) ; (s +t E)) + s)

After applying s to as many subterms as possible with a(z),
s is also tried at the root. If s did not succeed on any

subterm, it has to succeed on the root for the strategy to
succeed. The analogous pre-order strategies are:

sometd(s) = ~X(S tt Q(X))

manytd(s) = pz((s ; q (Z +t E)) +t a(,))

These strategies perform a single traversal over a term.
A normalization strategy for a strategy s keeps traversing
the term until it finds no more s-redexes. Examples of well-
known normalization strategies are reduce, which repeat-
edly finds a redex somewhere in the term, outermost, which
repeatedly finds a redex starting from the root of the term
and innermost, which looks for redexes from the leafs of the
term. Their definitions are:

reduce(s) = repeat(puz(O(x) + s))
outermost(s) = repeat(oncetd(s))

innermost(s) = repeat(oncebu(s))

Note that this definition of innermost reduction is not
very efficient. After finding a redex, search for the next
redex starts at the root again. A more efficient definition of
innermost reduction is the following.

innermost’(s) = pz(Cl(0) ; ((s ; X) tt e))

It first normalizes all subterms (O(x)), i.e., all strict sub-
terms we in s-normal-form. Then it tries to apply s at the
root. If that fails this means the term is in s-normal-form
and normalization terminates with E. Otherwise, the reduct
resulting from applying s is normalized again. Using the
other traversal strategies defined above a wide range of al-
ternative normalization strategies can be defined. See also
[27] for examples of alternative evaluation strategies.

3 Case Study: RML Optimizer

RML (261 is a strict functional language, essentially similar
to the core of Standard ML [22] with a few restrictions. In
this paper we consider a subset of RML that includes ba-
sic features of functional languages, namely basic constants
(integer, boolean, etc.) and primitive built-in functions, tu-
ples and selection, let-bindings and mutually recursive func-
tions. Programs are pre-processed by the compiler of RML
to A-normal form. The syntax of this restriction of RML is
presented in Table 4.

Table 5 describes a set of meaning preserving source-to-
source transformation rules for RML. The transformations
are intended to improve the performance of programs either
directly (e.g., (Deadl) and (DeadS), which perform dead
code elimination) or by enabling future improving trans-
formations (e.g., (Hoi&l) and (Hoist2), which sequentialize
code). For in-depth discussions of the intent and correctness
of these rules we refer the reader to the literature on trans-
formation of functional programs, e.g. [3, 4, 13, 241. These
particular rules were inspired by those presented in [4]. In
the sequel, we concentrate on the details of the implemen-
tation of these rules.

In these rules we use the following notation and auxil-
iary notions: We write a’ for a list of phrases al . . . a, with
the appropriate separator for the list type. The function
vars produces the set of free variables of an expression. An
expression is safe if it contains no calls to side-effecting prim-
itives or to user-defined functions; any safe function is guar-
anteed to be pure and terminating. An expression is small if

17

let x : t = let y : t’ = eo in el in ez * let g : t’ = eo in let z : t = el in ez

if y # vars(ez)

(Hoistl)

let 2 : t = letrec f&c in el in ez + letrec fdc in let x : t = el in e2 (Hoist2)

if for each f : t(2) = e’ in fd> : f @ vars(e2)

let 2 : t = el in e2 + e2 if x g’ vars(e2) and el is safe (Deadl)

letrec f&c in e -+ e if for each f : t (Z) = e’ in f&c: f 4’ vars(e) (Dead2)
let 2 : t = se in e + let z : t = se in e{se/z} Prop)

letrec f : t (2) = e’ in e[f (s’e)] ---+ letrec f : t (3) = e’ in e[rename(e’{G/Z})] (Inline)

if f e (vars(G) U vars(e[-I)) or e’ is small

letx:t=(ael,..., se,) in e[select(i,z)] ---t let 2 : t = (sel, . . . , se,) in e[sei] (Select)

let f : {+ t = el in e2 + letrec f : X-t t (2) = let f’ : C--b t = el in f’(2) in e2 (EtaExp)

if [Z/ = ITI, f’ and the xi are fresh variables and el is safe

Table 5: Transformation rules for RML

t::=bItl-+tzItl,...,tn (Types)
se ::= x 1 c (Simple expressions)

fdec ::= f : t (21,. . . , z,) = e (Function declarations)
vdec :I= x : t = e (Variable bindings)

e ::= se (Expressions)

1 x(=1,. . . , se,)

I d(sel,...,.m)

(sel,...,.m)

select(i, se)

let udec in e
letrec fdecl . . . fdec, in e

where 2, f, fl,... range over variables, c over constants,
md d over primitive built-in functions, i over integers,
z,el,.. . over expressions, b over basic types, and t, tl , . . .
lver types. No variable is bound twice.

Table 4: Syntax of RML

it contains no nested declarations; inlining a function whose
body is small cannot increase the size of the program (mea-
sured in number of expressions).

It might seem straightforward to implement these rules
by a rewriting system using the strategy combinators intro-
duced in the previous section. Unfortunately, this is not the
case! There is a gap between these transformation rules and
the simple rewrite rules defined above. Only (Hoistl) and
(Hoist2) conform to the format. (The conditions of these
rules are redundant in case no variable is bound twice.) All
the other rules use features that are not provided by basic
rewrite systems.

(Deadl) and (Dead2) are conditional rewrite rules that
remove pieces of dead code. The condition (Deadl) tests
whether the variable defined by the let occurs in the body
of the let. The condition of (Dead2) tests whether any of the
functions defined in the list of function declarations occur
in the body. (Prop), which performs constant and variable

propagation, requires substitution of free occurrences of a
variable by an expression. (Inline) is a context-sensitive rule
which replaces an application of the function f somewhere
in the expression e by the body of the function. This is
expressed by the use of a contest e[f (s-6)]. Inlining should
only occur if f appears only once in e (expressed here as
f $! (vars(a%) U vars(e[-I))) or its body is small. (Inline) uses
simultaneous substitution of a list of expressions for a list of
variables. Furthermore, the rule renames all occurrences of
bound variables with fresh variables, to preserve the invari-
ant that no variable is bound twice. This invariant simplifies
substitution and testing for the occurrence of a variable in
an expression. Finally, (EtaExp) requires the generation of
variables that are fresh with respect to the entire program.

4 Refining the Strategy Language

The RML example shows that simple unconditional rules
lack the expressivity to describe optimization rules for pro-
gramming languages and that we need enriched rewrite rules
with features such as side conditions and contexts and sup-
port for variable renaming and substitution of object vari-
ables. For other applications we might need other features
such as list matching and matching modulo associativity and
commutativity. Adding each of these features as an ad-hoc
extension of basic rewrite rules would make the language
difficult to implement and maintain. It is desirable to find
a more uniform method to deal with such extensions.

If we take a closer look at the features discussed above,
we observe that they all have strategy-like behaviour. For
instance, a rule with a context c[Z’] in the left-hand side and
c[r’] in the right-hand side can be seen as a strategy that tra-
verses the subterm that matches c and applies rule 1’ + P’.
Also, checking that some term tl occurs as a subterm of
a term t2 requires traversing t2. Therefore, instead of cre-
ating more complex primitives such as rules with contexts,
we break down rewrite rules into their primitives: match-
ing against term patterns and building terms. Using these
primitives we can implement a wide range of features in the
strategy language itself by translating rules which use those
features into strategy expressions.

18

t:&
match(t’) f t : E’ if E’ &I & A &‘(t’) = t

t:&
build(t’)

) &(t’) : & if vars(t’) c dom(&)

t:EAt’:&’

t:&
where8 t : E,

t : (&\Z) 4 t’ : E’

t : & il:s), t’ : (&I\?) u (El2)

tl:&(J%t::El . . . tn:Elt-l*t:,:En

f(h,. . .) tn) : &o f(slv-.rsn)+ f(t;, . . . , tl,) : &,

t1 : Eo e, t: : El . . . t, : En-1 4 t:, : R
f(h)..‘) tn):&+%f(t:)..‘(qJ:En

{

tj if ti : &i-l 9, ti : &i
3jVi : i,j E {l..n} A P(ti) = ti if ti : &i-l 8, t A

&=&i-l Ai#j

f (tl, .) tn) : &o w f (P(h), . . .) P(t,)) : &,,

(a) positive rules

t:& mstch(t’) b t if 4E’ It! & A &‘(t’) = t

f . & b”i’d(t’)) t I . if vars(t’) g dom(&)

t:&At

t:& where s
tt

tl: Eo-%t: : 61 ..a ti: Ei-l -%t

f(tl ,... ,tn): E. f(s1’-“9n),-f

tl : E. 8, t; : El . . . ti : Ei-1 -% t

f@l,. . . ,tn): EoO’““t

tl:&--%t . . . t,:E*t

f(tl, . . . , tn) : E % t

(b) negative rules

Table 6: Operational semantics for environment operators.

Match, Build and Scope We first define the semantics
of matching and building terms. A rewrite rule f? : 1 + T
first matches the term against the left-hand side 1 producing
a binding of subterms to the variables in 1. Then it builds a
new term by instantiating the right-hand side T with those
variable bindings. By introducing the new strategy primi-
tives match and build we can break down e into a strategy
match(l) ; build(r). However, this requires that we carry the
bindings obtained by match over the sequential composition
to build. For this reason, we introduce the notion of envi-
ronments explicitly in the semantics.

An environment E is a mapping of variables to ground
terms. We denote the instantiation of a term t by an en-
vironment & by E(t). An environment E’ is an extension
of environment E (notation E’ 2 E) if for each z E dom(&)
we have E’(x) = E(x). An environment E’ is the smallest
extension of E with respect to a term t (notation E’ zt E),
if E’ 2 E and if dom(E’) = dam(E) U vars(t).

Now we can formally define the semantics of match and
build. We extend the reduction relation & from a relation
between terms and reducts to a relation on pairs of terms
and environments, i.e. a strategy 3 transforms a term t
and an environment E into a transformed term t’ and an
extended environment E’, denoted by t : & d, t’ : E’, or
fails, denoted by t : E -% t. The operational semantics
of the environment operators are defined in Table 6. The
change in the format of the operational semantics should be
reflected in the semantics of the operators introduced earlier.
In the remainder of the paper the rules in Tables 2 and 3
should be read as follows: a transition t -% t’ denotes a
transition t : E --% t’ : E’. The only exceptions are the rules
for congruence, 0 and KY See Table 6 for their definitions
in the extended semantics,

Once a variable is bound it cannot be rebound to a dif-
ferent term. To use a variable name more than once we
introduce variable scopes. A scope (3 : s} locally undefines
the variables Z. That is, the binding to a variable xi outside
the scope (2 : s} is not visible inside it, nor is the binding
to xi inside the scope visible outside it. The notation & \ 5
denotes & without bindings for variables in j?. E(4 denotes
E restricted to Z The strategy operator where is similar to
the test operator of Section 2 in that it tries a strategy and
returns the original term if it succeeds. However, it keeps
the transformation on the environment. This operator can
be used to encode a local computation that binds the an-
swer to a variable to be used outside it, without actually
transforming the term.

Note that this definition supports matching with non-
linear patterns. If a variable z occurs more than once in a
pattern t, then match(t) succeeds only if all occurrences of
x in t are bound to the same term. Moreover, if a variable
x in t was already bound by a previous match, it should
match to the exact same term as it was bound to before.
For example, consider the strategy in that tests whether x
is a subterm of J/. It is defined as

in = {x, y : match((x, y)) ;
test(build(y) ; oncetd(match(x)))}

The first match matches a pair of terms (tl, t2), binding tl to
x and t2 toy. The build replaces the pair by t2. The traversal
oncetd searches for an occurrence of tl in t2 by matching z
(which is bound to tl) against subterms of t2. The strategy
succeeds if it actually finds a matching subterm. The use of
test ensures that the predicate does not affect the term to
which it is applied.

19

5 Implementation of Transformation Rules

We now have a strategy language that consists of match and
build as atomic strategies (instead of rewrite rules) and all
the combinators introduced in Section 2. Using this refined
strategy language, we can implement transformation rules
by translating them to strategy expressions. In this higher-
level view of strategies we can use both the ‘low-level’ fea-
tures match, build and scope and the ‘high-level’ features
such as contexts and conditions. We start by defining the
meaning of unconditional rewrite rules in terms of our re-
fined strategy language.

5.1 Unconditional Rewrite Rules Revisited

A labeled rewrite rule e : 1 -+ r translates to a strategy
definition

! = {vars(l, r) : match(l) ; build(r)}

It introduces a local scope for the variables vars(l, P) used in
the rule, matches the term against 1 and then builds r using
the binding obtained by matching.

5.2 Subcomputation

Many transformation rules require a subcomputation in or-
der to achieve the transformation from left-hand side to
right-hand side. For instance, the inlining rule in Table 5
applies a substitution and a renaming to an expression in
the right-hand side.

Where The where clause is the basic extension of rewrite
rules to achieve subcomputations. A rule

e: 1 --t rwheres

corresponds to the strategy

! = {vars(l, r, s) : match(l) ; where(s) ; build(r)}

that first matches I, then tests s and finally builds r. The
strategy s can be any strategy that affects the environment
in order to bind variables used in r or just tests a property
of the left-hand side. Note that s can transform the original
term, but the effect of t,his is canceled by the where. Only
the side-effect of s on the environment matters.

Boolean Conditions Conditions that check whether
some predicate holds are implemented as strategies using
the where clause. Failure of such a strategy means that the
condition does not hold, while a success means that it does
hold. Predicates are user-defined strategy operators. Con-
ditions can be combined by means of the strategy combina-
tors. In particular, conjunction of conditions is expressed by
means of sequential composition and disjunction by means
of choice. In such conditions we use the notation (s) t, which
corresponds to build(t) ; s. For instance, the encoding of the
dead code elimination rule (Deadl) is:

Dead1 : Let(Vdec(z, t, er), ez) + er
where -((in) (Var(z), ez)) ; (safe) er

Where (in) (tl, t2) tests that tl is a subterm of t2 as defined
before and safe tests that an expression is terminating and
side-effect free.

Matching Condition Another kind of subcomputation
is the application of a strategy to a term built with vari-
ables from the left-hand side 1, matching the result against
a pattern with variables used in the right-hand side r. The
notation s =+ t’ is a shorthand for s ; match(t’). The com-
bined notation (s) t + t’ thus stands for build(t);s;match(t’).
It first applies s to t and then matches the result against t’
binding its variables.

Application in Right-hand Side Often it is annoying
to introduce an intermediate name for the result of applying
a strategy to a subterm of the right-hand side. Therefore,
the application (s) t can be used directly in the right-hand
side r. That is, a rule

e : 1 -+ v-[(3) t]

is an abbreviation of

e : 1 -+ r [cc] where (s) t 3 z

where z is a new variable. The notation t [t’] denotes a meta-
context, i.e. a term t with a specific occurrence of a subterm
t’. The replacement by t” of the subterm t’ in t is denoted
by t [t”].

5.3 Contexts

A useful class of rules are those whose left-hand sides do not
match a fixed pattern but match a top pattern and some in-
ner patterns which occur in contexts. For instance, consider
the (Inline) and (Select) rules in Table 5. Contexts can also
be implemented with the where clause. A rule

with a context c[-] occurring in the left-hand side and the
right-hand side corresponds to the rule

e : 1 [c] -+ r [c’]
where (p({vars(l’, r’)\vars(l [c], r [c’]) :

match(?) ; build(r’)})) c =S c’

where c’ is a fresh variable. The strategy in the where clause
traverses the subterm matching c to find one or more occur-
rences of 1’ and replaces them with r’. The result of the
traversal is bound to c’, which is then used in the right-
hand side of the rule. Note that the variables of 1’ and r’
are locally scoped except those common with the variables
of 1 and r, since those are instantiated in 1 and/or used
in r. The strategy operator ‘p that is specified in conjunc-
tion with the contexts indicates the strategy used for the
traversal. This determines where and how often the rule is
applied.

As an example, consider the encoding of the (Select) rule:

Se1 : Let(Vdec(z, t, ses), e[Select(i, z)]) +

Let(Vdec(z, t, ses), e[(index) (i, ses)](sometd))

It uses the traversal strategy sometd to replace all occur-
rences of Select(i,z) in e by the corresponding element of
the record. The strategy index takes the i-th element from
the list ses of simple expresions. Using the encoding defined
above this rule translates to the rule:

Se1 : Let(Vdec(z, t, SW), e) + Let(Vdec(z, t, ses), e’)
where (sometd({i : match(Select(i,z)) ;

build((index) (i, ses))})) e 3 e’

20

Note that the variable i is local to the context traversal and
can thus be instantiated to more than one value.

We have only discussed rules with one context. Rules
with more than one context are beyond the scope of this
paper.

5.4 Variable Renaming

An important feature of program manipulation is bound
variable renaming. A major requirement is to provide re-
naming as an object language independent operation. This
means that the designer should indicate the binding con-
structs of the language. This is done by mapping each bind-
ing construct to the list of variables that it binds. For exam-
ple, the following rules map the variable binding constructs
of RML to the list of variables they bind.

Bind1 : Let(Vdec(,x, -), -) + [x];
Bind2 : Letrec(fdecs, -) +

(map({f : match(Fdec(, f, -, -)); build(f)})) fdecs

Bind3 : Fdec(, -, xs, -) -i xs

Given these rules and a couple of additional rules for indi-
cating in which arguments the constructs are binding (see
Appendix A) the strategy rename renames all bound object
variables. This strategy uses the built-in strategy new which
generates fresh names. See Appendix D for its definition.

6 Rules and Strategy for RML

Rules Table 7 presents the specification of RML optimiza-
tion. It consists of a signature, rewrite rules and strategy
definitions. The signature defines the abstract syntax of the
object language of the optimizer. The rules section defines
the individual transformation rules. The strategies section
defines two strategies for combining these rules into an op-
timization algorithm. The module imports several auxiliary
modules that are defined in the appendices.

Observe that the specification of the rules is very close to
the original rules in Table 5. The main difference is that the
inline rule has been split into two rules. Rule In11 handles
the case that the body of the function is small and hence can
be inlined everywhere in the body of the Letrec. Rule In12
has no condition and replaces exactly one occurence of an
application of the function f in the body of the Letrec. To
achieve the condition that this rule should only be applied
when f does not occur in the body of the Letrec after inlin-
ing the rule is always followed by an application of Dead2. If
Dead2 succeeds this guarantees that f does not occur any-
more.

Strategies An advantage of our approach of separating
the specification of rules from strategies is the ability to
experiment with alternative strategies for the same set of
rules. We present the strategies optimize1 and optimize2
for the RML transformation rules.

In optimize1 and optimize2, we have avoided applying
EtaExp repeatedly since this rule is not terminating. Both
optimize1 and optimize2 first apply EtaExp once every-
where in the term. The strategy optimize1 uses the generic
strategies innermost’ and manydownup (see Appendix B) to
apply the rules.

The strategy manydownup applies a strategy s at all posi-
tions of a term once while going down into the term and once

on the way back. It fails when none of these applications
succeed. If it succeeds we know that some redex has been
reduced. Hence, we can repeat manydownup to normalize a
term.

While optimize1 uses generic strategies, optimize2 uses
the properties of the rules in order to apply them in a more
restricted way. It first tries to hoist a Let at the root. Notice
that it repeats Hoist1 since it may reapply at the root,
whereas Hoist2 cannot reapply after one application. Then,
only Let or Letrec expressions can be redexes. For each
case there are specific rules that can apply. This leads us
to define a sub-strategy for each case and compose them
non-deterministically. In both cases we first normalize the
body of the Let or Letrec expression. For a Let we try
the rules Prop and Se1 and then Deadl. For a Letrec, we
first normalize the bodies of the functions of the Letrec
expression. Then we try In11 or In12 and if they succeed
we try Dead2. Since inlining gives rise to new opportunities
for optimization, we try to reapply the strategy to this term.

7 Implementation

The strategy language presented in this paper has been im-
plemented in Standard ML. The programming environment
consists of a simple interactive shell that can be used to load
specifications and terms, to apply strategies to terms using
an interpreter and to inspect the result. A simple inclu-
sion mechanism is provided for modularizing specifications.
The current implementation does not yet implement the sort
checking for rules and strategies.

In addition to an interpreter, the programming envi-
ronment contains a compiler that generates C code. The
compilation of non-deterministic strategies is reminiscent of
the implementation of Prolog in WAM [l] using success and
failure continuations and a stack of choicepoints to imple-
ment backtracking. The run-time environment of compiled
strategies is based on the ATerm C-library [23]. It pro-
vides functionality for building and manipulating a term
data-structure, reference count garbage collection, a parser
and pretty-printer for terms. An important feature is that
full sharing of terms is maintained (hash-consing) to reduce
memory usage. We have used the implementation to exper-
iment with the optimizer for RML discussed in this paper.
No performance results are available yet.

The compiler implements a straightforward translation
of strategy expressions to C programs that performs no
optimizations. Currently we are bootstrapping the com-
piler by specifying it in the strategy language itself. This
gives us the opportunity to apply optimizations to strategies.
There are several levels of optimization we are considering:
simplification of expressions by applying simple algebraic
laws; factoring out common prefixes from the alternatives
of choices; propagating knowledge about matching history
through traversals. Finally, it is worth considering the au-
tomatic derivation of more refined strategies by specializing
applications of generic strategies to specific rules. An exam-
ple would be to derive a strategy in the style of optimize2
from a strategy in the style of optimize1 in Table 7.

An alternative approach to implementation of the lan-
guage would be as a library of functions in a general pur-
pose language, e.g., a functional language such as ML or
Haskell. For each operator in the core language a corre-
sponding function is defined. In fact, our interpreter uses
such a library. The advantage of such an embedded imple-

21

mentation is that work on run-time environment and such
can be borrowed from the host language. However, since a
more general framework is used, the host compiler cannot
take advantage of knowledge of the specific domain of term
transformation.

8 Related Work

Program Optimization There have been many at-
tempts to build frameworks for program analysis and opti-
mization, often using special-purpose formalisms. The sys-
tems closest to ours in spirit are probably OPTRAN [19] and
Dora/Tess 1121. Like our system, these are based on ideas
from term rewriting and emphasize separating the declar-
ative specification of rewrite rules from the strategy to be
used in applying them. Unlike our system, however, they
support only a fixed set of pre-defined strategy options, and
the same strategy must be used for all rules and for the
whole tree. The options provided by the two systems are
similar: traverse the tree top-down or bottom-up; traverse
children left-to-right or right-to-left; rewrite each node only
once per traversal or iterate at each node until a fixed point
is reached. Our strategy language can easily implement
these options (e.g., in a general-purpose library), but can
also define much more fine-grained strategies where needed.

Numerous other systems provide mechanisms for gener-
ating transformation code, but none appears to offer our
flexible combination of generic and rule-specific strategies.
DFA&OPT-MetaFrame [18], Sharlit [25], Genesis [28], and
OPTIMIX [5] are all primarily designed as analyzer gener-
ator systems, each focused on a particular style of analysis.
Their published descriptions do not give many details about
their transformation capabilities, but none appears to give
the user any control over transformation order. At the oppo-
site extreme, KHEPERA [ll], TXL 19, 211, and Puma 1151,
provide succinct primitives for matching and building sub-
trees, but for the most part require that tree traversal be
programmed explicitly in imperative style, node by node.
TXL includes a “searching” version of the match operator
which behaves like an application of our oncetd strategy.
KHEPERA provides a built-in construct to iterate over the
immediate children of a node.

Other recent approaches to high-level description of opti-
mizations include Aspect-Oriented Programming (1.61, which
advocates the use of domain-specific “aspect” languages to
describe optimization of program IR trees (in practice, LISP
is generally used), and Intentional Programming [2], which
provides a library of routines for manipulating ASTs. Nei-
ther of these approaches particularly encourages separation
of rules from strategies for their application.

Strategies In conventional term rewriting languages,
rewrite systems are assumed to be confluent and terminat-
ing and therefore, strategies are only considered at the meta-
level of language design and implementation. In particular,
algebraic specification formalisms such as ASF+SDF [lo]
only provide one fixed strategy for normalizing terms with
respect to a set of rewrite rules. A common work-around to
implement strategies in such a setting is to encode a strat-
egy into the rewrite system by providing an extra outermost
constructor that determines at which point in the term a
rewrite rule can be applied.

In theorem proving such fixed strategies are not sufficient
since a theorem can be proved in many ways. The theorem

33

proving framework LCF [14] introduced tactics for proving
theorems. A tactic transforms a goal to be proved into a
list of subgoals and a proof. By repeatedly applying tactics
a list of goals is reduced to the empty list, which indicates
that the original goal is proven. A series of basic tactics
are provided, including a simplification tactic that applies a
set of rewrite rules using a fixed strategy. New tactics can
be formed from existing ones using tacticals. The standard
tacticals are similar to our identity, sequential composition,
left choice and repeat strategy operators, although they have
a somewhat different semantics since they apply to a subgoal
instead of to the root of a term. In the theorem proving
domain there is no need for traversal tacticals.

In the specification formalism ELAN [17] the notion of
transformation of goals to a list of subgoals is generalized to
arbitrary term rewrite rules. Strategies are regular expres-
sions over the set of rule labels. In 1171 this approach is used
to define constraint solvers that consist of rules that rewrite
a list of constraint into a new list of constraints. A strategy
repeatedly applies such rules until a solution is found. In
later versions of the language, e.g., [7], the set of strategy
operators is extended with congruence operators to support
term traversal.

ELAN does not provide generic traversal operators anal-
ogous to our i(s), Cl, 0 and E3. Instead traversals have to
be defined explicitly for each datatype using congruences.
Recursive strategies are expressed in ELAN using recursive
strategy definitions. Further differences with ELAN are the
negation and test operators and the breakdown of rules into
primitives. Where ELAN has a fixed syntax for rewrite rules
our strategy language can easily be extended with expressive
features that are implemented in terms of the core language.

Maude [S] is a specification formalism based on rewrit-
ing logic. It provides equations that are interpreted with
innermost rewriting and labeled rules that are used with an
outermost strategy. Strategies for applying labeled rules can
be defined in Maude itself by means of reflection.

The language described in this paper was inspired by the
strategy language of ELAN. The first version was described
in [20], which presents a strategy language with identity, se-
quential composition, choice, recursion, and a generic ‘push-
down’ operator that is used to define Cl and 1. Its design
was guided by the process algebra ACP [6]. An interpreter
for strategy expressions is specified in the algebraic specifi-
cation formalism ASF+SDF [lo]. Basic strategies are un-
conditional ASF+SDF rewrite rules

In this paper we have extended our first language with
the operators failure, negation, test, path, congruence and
0. Furthermore, we cater for a much more expressive set
of rules by means of the breakdown of rewrite rules into
match, build and scope. In addition, our current language
is implemented by compilation to C.

Technical contributions of our work in the setting of
strategy languages include the modal operators El, 0 and
q that enable very concise specification of term traversal;
a set general purpose traversal strategies; the explicit re-
cursion operator pz(s); the refinement of rewrite rules into
match and build; and the encoding of complex rewrite rules
into strategies, in particular the expression of rules with con-
texts.

In [27] we describe how our core strategy language can be
used to implement conventional term rewriting engines and
how these can be extended with non-standard evaluation
strategies.

nodule rml
imports traversal
imports list
imports substitution
imports renaming
imports rml-aux
signature

sorts TExp Vdec Fdec Se Exp
operations

Funtype : List(TRxp) * TExp -> TExp -- Type expressions
Recordtype : List(TExp) -> TExp
Primtype : String -> TExp
Vdec : TExp * String * Exp -> Vdec -- Variable declarations
Fdec : TExp * String +

List(String) * Exp -> Fdec -- Function declarations
Const : TExp * String -> Se -- Simple expressions
k3.r : String -> Se
Simple : Se -> Exp -- Expressions
Record : List(%) -> Exp
Select : Int * Se -> Exp
Paw : String * List(Se) -> Exp
APP : Se * List(Se) -> Exp
Let : Vdec * Exp -> Exp
Letrec : List(Fdec) * Exp -> Exp

:ules

Ioistl : Let(Vdec(t, x, Let(vdec, el)), e2) -> Let(vdec, Let(Vdec(t, x, el>, e2))

Ioist2 : Let(Vdec(t, x, Letrec(fdecs, el)), e2> -> Letrec(fdecs, Let(Vdec(t, x, ei>, e2)>

lead1 : Let(Vdec(t, x, el), e2) -> e2 where not(<in> (Var(x), e2>>; <safe> el

)ead2 : Letrec(fdecs, el) -> el where <map(Cf : match(Fdec(-,f,-,-)I; not(<in> (Var(f), el>>)>> fdecs

'rap : Let(Vdec(t, x, Simple(se)), eCVar(x)l> -> Let(Vdec(t, x, Simple(se)), eke1 (sometd))

:n11 : Letrec([Fdec(t, f, xs, el)], ePCApp(Var(f), ss)l> ->
Letrec([Fdec(t, f, xs, ei)], e2ksubs; rrename) (x8, 88, el>](sometd)>
where <small> el

Yn12 : Letrec([Fdec(t, f, xs, el)], e2[App(Var(f), sdl) ->

Letrec([Fdec(t, f, xs, el)l, e2[<rsubs; rrename) (xs, ss, el>l(oncetd)>

lel : Let(Vdec(t, x, Record(ss)), e[Select(i, Var(x))l> ->
Let(Vdec(t, x, Record(ss)), e[Simple(<index> (i, ss))l(sometd>>

:taExp : Let(Vdec(Funtype(ts, t>, fl, el>, e2) ->
Letrec([Fdec(Funtype(ts, t), fl, x8, Let(Vdec(Funtype(ts, t), f2, el), App(Var
where <safe> al; new => f2; <map(new)> ts => x8; Qnap(MkVar)> x8 => ses

strategies

(f2), ses))>l, e2)

1pti = innermost'(Hoist1 + HoistSI;
manydownup(((Inl1 <+ (In12; Dead21 + Se1 + Prop); repeat(Dead1 + Dead2) <+ repeatl(Dead1 + Dead2111

Nptimizel = bottomup(try(EtaExp)); repeat(opt1)

pt2 = ret x(repeat(Hoist1); try(Hoist2);
try(Let(id, x1; try(Prop + Sell; try(Deadl; x)

t Letrec(id, x); (Dead2 <+ try(Letrec(map(Fdec(id,id,id,x)),id);
try((Inl1; try(Dead2) <+ In12; Deada); x)))))

ptimixe2 = bottomup(try(EtaExp)) ; opt2

Table 7: Specification of RML transformation rules

23

9 Conclusions

We have illustrated how separating transformation rules
from the application strategy can promote concise, under-
standable descriptions of complex rewriting tasks. Our ex-
ample compiler optimizer takes about 50 lines; the corre-
sponding handwritten Standard ML code is several hundred
lines. Moreover, we can completely alter the optimizer’s
rewriting strategy by changing just two or three lines, or
add a new transformation rule and inserting its tag at the
appropriate place in the strategy; similar changes to the ML
version would require extensive structural edits throughout
the code.

Although we concentrate on program optimizers in this
paper, we believe that the techniques are equally well appli-
cable in other areas where source to source transformations
are used, including simplification, typechecking, interpreta-
tion and software renovation.

Acknowledgements We thank Bas Luttik for the discus-
sions that started our work on strategies. Several ideas that
didn’t make it into [20] have been included here. The imple-
mentation of the strategy language was speeded up consid-
erably by the use of Tim Sheard’s programs for generation
of C code and by the use of Pieter Olivier’s ATerm library.
We thank Eugenio Moggi and Philip Wadler for remarks on
the semantics and Patricia Johann for remarks on a previous
version of this paper.

References

PI

PI

131

141

151

161

171

I81

Hassan Ait-Kaci. Warren’s Abstract Machine. A Tuto-
rial Reconstruction. The MIT Press, Cambridge, Mas-
sachusetts, 1991.

William Aitken, Brian Dickens, Paul Kwiatkowski,
Oege de Moor, David Richter, and Charles Simonyi.
Transformation in intentional programming. In Pro-
ceedings ICRSS, June 1998. (To appear).

Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

Andrew W. Appel and Trevor Jim. Shrinking lambda
expressions in linear time. Journal of Functional Pro-
gramming, 7(5):515-540, September 1997.

Uwe Assmann. How to uniformly specify program anal-
ysis and transformation with graph rewrite systems. In
Proceedings Compiler Construction 1996, number 1060
in Lecture Notes in Computer Science, 1996.

J.A. Bergstra and J.W. Klop. Process algebra for
synchronous communication. Information I3 Control,
60:82-95, 1984.

Peter Borovansky, Claude Kirchner, and Helene Kirch-
ner. Controlling rewriting by rewriting. In Jose
Meseguer, editor, Proceedings of the First International
Workshop on Rewriting Logic and its Applications, vol-
ume 4 of Electronic Notes in Theoretical Computer Sci-
ence, Asilornar, Pacific Grove, CA, September 1996. El-
sevier.

Manuel Clavel, Steven Eker, Patrick Lincoln, and Jo&
Meseguer. Principles of Maude. In Jose Meseguer, edi-
tor, Proceedings of the First International Workshop on

PI

[lOI

WI

PI

1131

P41

P51

W

1171

P81

PI

Rewriting Logic and its Applications, volume 4 of Elec-
tronic Notes in Theoretical Computer Scaence, pages
65-89, Asilomar, Pacific Grove, CA, September 1996.
Elsevier.

James R. Cordy, Ian H. Carmichael, and Russell Hal-
liday. The TXL Programming Language, Version 8,
April 1995.

A. Van Deursen, J. Heering, and P. Klint, editors.
Language Prototyping. An Algebraic Specification Ap-
proach, volume 5 of AMAST Series in Computing.
World Scientific, Singapore, September 1996.

Rickard E. Faith, Lars S. Nyland, and Jan F. Prins.
KHEPERA: A system for rapid implementation of do-
main specific languages, In Proceedings USENIX Con-
ference on Domain-Specific Languages, pages 243-255,
October 1997.

Charles Donald Farnum. Pattern-Based Languages for
Prototyping of Compiler Optimizers. PhD thesis, Uni-
versity of California, Berkeley, 1990. Technical Report
CSD-90-608.

Pascal Fradet and Daniel Le Mktayer. Compilation of
functional languages by program transformation. ACM
Transactions on Programming Languages and Systems,
13(1):21-51, January 1991.

M. J. Gordon, A. J. Milner, and C. P. Wadsworth.
Edinburgh LCF. A Mechanised Logic of Computation,
volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1979.

Joseph Grosch. Puma - a generator for the trans-
formation of attributed trees. Technical Report 26,
Gesellschaft fiir Mathematik und Datenverarbeitung
mbH, Forschungsstelle an der Universitlt Karlsruhe,
November 1991.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. Technical
report, Xerox Palo Alto Research Center, 1997.

C. Kirchner, H. Kirchner, and M. Vittek. Implementing
computational systems with constraints. In P. Kanel-
lakis, J-L. Lassez, and V. Saraswat, editors, Proceed-
ings of the first Workshop on Princzples and Practice
of Constraint Programming, pages 166-175, Providence
RI., USA, 1993. Brown University.

Marion Klein, Jens Knoop, Dirk Koschiitzki, and Bern-
hard Steffen. DFA & OPT-METAFrame: A toolkit
for program analysis and optimization. In Proceed-
ings of the 2nd International Workshop on Tools and
Algorithms for the Construction and Analysis of Sys-
tems (TACAS’96), volume 1055 of Lecture Notes in
Computer Science, pages 418-121, Passau (Germany),
March 1996. Springer Verlag.

Peter Lipps, Ulrich Miincke, and Reinhard Wilhelm.
OPTRAN - a language/system for the specification of
program transformations: System overview and experi-
ences. In Proceedings 2nd Workshop on Compiler Com-
pilers and High Speed Compilation, volume 371 of Lec-
ture Notes in Computer Science, pages 52-65, October
1988.

24

PO1 Bas Luttik and Eelco Visser. Specification of rewriting
strategies. In M. P. A. Sellink, editor, 2nd Interna-
tional Workshop on the Theory and Practice of Alge-
braic Specifications (ASF+SDF’97), Electronic Work-
shops in Computing, Berlin, November 1997. Springer-
Verlag.

PI Andrew Malton. The denotational semantics of a
functional tree-manipulation language. Computer Lan-
guages, 19(3):157-168, 1993.

P21 Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition of Standard ML (Revised).
MIT press, 2nd edition, 1997.

[231 Pieter Olivier. Term data-structure library - C API.
Programming Research Group, University of Amster-
dam, 1997. (Unpublished software documentation.).

P41 S. L. Peyton Jones and A. L. M. Santos. A
transformation-based optimiser for Haskell. Science of
Computer Programming, 1998. (To appear).

P51 Steven W. K. Tjiang and John L. Hennessy. Sharlit-
A tool for building optimizers. In ACM SIGPLAN ‘92
Conference on Programming Language Design and Im-
plementation, July 1992.

P61 Andrew Tolmach and Dino Oliva. From ML to Ada:
Strongly-typed language interoperability via source
translation. Journal of Functional Programming, 1998.
(To appear).

I271 Eelco Visser and Zine-el-Abidine Benaissa. A core lan-
guage for rewriting. In C. Kirchner and H. Kirch-
ner, editors, Second International Workshop on Rewrit-
ing Logic and its Applications (WRLA’98), Elec-
tronic Notes in Theoretical Computer Science, Pont-
8-Mousson, France, September l-4 1998. Elsevier.

PI Deborah Whitfield and Mary Lou Soffa. The design
and implementation of Genesis. Software- Practice and
Experience, 24(3):307-325, March 1994.

A Auxiliary Strategies for RML

The module rml-aux defines the predicates small and safe.
Furthermore, it defines the strategies rsubs for substitution
in RML expressions and rrename for renaming bound vari-
ables in RML expresions. These strategies are instantiations
of the language independent strategies subs (Appendix D)
and rename (Appendix E).

module rml-aux
imports substitution
imports renaming
strategies

small = SimpleCid) + Record(id) + Select(id, id)
+ Pappcid, id) + App(id, id)

safe = not(oncetd(App(id,id) +
match(Papp("assign", ->)))

rules

IsVar : Var(x> -> x

Mkvar :

Bind1 :
Bind2 :

Bind3 :

x -> Var(x>

Let(Vdec(-,x,-),-) -> [xl
Letreccfdecs, -1 ->
<map({f : match(Fdec(-.f ,-,->I;

build(f)))> fdecs
Fdec(-,-,xs,-) -> xs

PutVar : (f, Fdec(t, f', xs, e>> ->
Fdec(t, f, xs, e>

PutVars(nvs, nbnd) :
fdecs -> <zip(PutVar; nbnd)> (fs, fdecs)
where nvs => fs

strategies

rsubs = subs(IsVar)

rn-apply(nvs, bnd, nbnd) =
Let(Vdec(id, nvs; Hd, nbnd), bnd)

+ Fdeclid, id, nvs, bnd)
+ Letrec(PutVars(nvs. nbnd), bnd)

rrename =
reneme(IsVar, MkVar, Bind1 + Bind2 + Bind31

B Traversal Strategies

In this and the next appendices we present three sets of
generally applicable strategy operators. Note that all, one,
and some stand for q i, 0, and q , respectively.

module traversal
strategies

try&>

repeat(s)
repeatl(s)

bottomup
topdown
downup

oncebuts)
oncetd(s)

somebu(s)
sometd(s)

manybu(s)
manytd(s)

= s <+ id

= ret x(try(s; X)>
= s; repeat(s)

= ret x(all(x>; s>
= ret x(s; all(x)>
= ret x(s; all(x); s>

= ret x(one (xl <+ s>
= ret x(8 <+ one(x)>

= ret x(some(x> <+ s)
= ret x(8 <+ some(x))

= ret x((some(x>; try(s)) <+ s)
= ret ~((8; all(try(x))) <+ some(x)>

manydownup(s) 5: ret x((s; all(try(x)); try(s))
<t (some(x); try(s)>)

alltdk) = ret x(6 <+ all(x)>

reduce(s) = repeatcrec x(some(x> + s>>
outermost(s) = repeat(oncetd(s))
innermost(s) = repeat(oncebu(s))
innermost'(s) = ret x(all(x); tryk; x1)

in = {x,y: match((x,y));
test(<oncetd(match(x))> y)

25

C List Strategies

module list
signature

operations
Nil : List(a)
Cons : a * List(a) -> List (a>

rules

Hd : Cons(x, xs) -> x
Indl : (1, Cons(x, x6)) -> x
Ind2 : h, Cons(x, xs>> -> (<minus> (n, 11, x8>

where <geq> (n, 2)

strategies

index = repeat (Ind2) ; Indl
map(s) = ret x(Ni1 + Cons(s, x1>
at-tail(s) = ret x(Ni1; s + Conscid, xl>
fetch(s) = ret x(Cons(s, id) <+ Conscid, x>)

rules

cone : (11, 12) -> <at_tail(build(l2))> 11

lookup(mklst) : x -> v

Zip0 :
Zipl(a, b) :

.
where mklst; fetch(match((x, y)))

(Nil, Nil) -> Nil
(Cons(x, xs), Cons(y, ys)) ->
Cons(<a> (x, y), (xs, ys))

strategies

zip(s) = ret x(Zip0 + Zipl(s, x1)

D Substitution

The strategy subs(isvar), applied to a triple (xs, ts, t)
of a list of strings xs, a list of terms ts and a term t, re-
places each occurence in t of a variable x from xs by the
corresponding term in ts; The parameter strategy isvar
should be a rule (or choice of rules) that maps a term rep-
resenting an (object) variable to its name. Typically such a
rule is of the form Vex(x) -> x.

The strategy first matches its arguments. Then it zips
together the string list and the term list to get a table tbl
that associates variable names with terms they have to be
substituted with. (This fails if xs and ts are lists of dif-
ferent length, because zip will fail.) Finally, a traversal of
the term t replaces each variable occuring in the table by
its target. Note that the strategy alltd stops after it has
found an application of its argument strategy. This is nec-
essary to avoid applying the substitution to the terms being
substituted. This strategy assumes that bound variables are
renamed such that no variable is bound twice.

module substitution
imports traversal
imports list
rules

subs (isvar) =
{tbl, xs, ts, t

: match((xs, ts, t)) ;
<zip(id)> (xs, ts) => tbl;
<alltd(isvar; CetVar(build(tbl)))> t

3

E Renaming

The strategy rename(isvar, mkvar, bnd) renames all
bound variables in a term to new variables. It is param-
eterized with strategies that express what the variables and
the binding constructs of the language are. The parameter
isvar recognizes variables and maps them to their name.
The parameter mkvar maps a string to a variable. The pa-
rameter bnd maps each binding construct to the list of vari-
ables that it binds.

In addition, the user should specify the strategy operator
m-apply (a, b, c) such that for each variable binding con-
struct a is applied to the subterm containing the variable(s)
b is applied to the subterms in which the variables are bound
c is applied to the subterms in which the variables are not
bound. For an example, see Appendix A.

module renaming
imports traversal
imports list
strategies

rename (isvar, mkvar, bnd) =
Ct : match(t); build((t, [I)>);
ret reni
(11:

It: match((t, 1)); build(t));
ret ren2
(isvar ; lookup (build (1) > ; mkvar
<+ cxs, ys, 1’:

where(bnd s> xs; map(new) => ys;
<cone> (<zip(id)> (x8, ys), 1) -> 1');

rn-apply(build(ys),
{x: match(x); build((x, 1'))); renl,
Ix: match(x); build((x, 1))); renl))

<+ all(ren2))
3)

GetVar (mktbl)
: x -> z where mktbl; fetch(match((x, z>>>

strategies

26

