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PrefaceThis thesis is one of the results of the project Incremental parser generation andcontext-sensitive disambiguation: a multi-disciplinary perspective, supported bythe Netherlands Computer Science Research Foundation (SION) with �nancialsupport from the Netherlands Organisation for Scienti�c Research (NWO). Theother main result is the thesis of Annius Groenink (1997) who was the otherOIO on the project.My side of the project can be divided in three main lines of research. In the�rst place I have been concerned with techniques for parsing and disambiguationof context-free languages targeted at the design of programming languages. Thisled to a number of results on disambiguation, including a general frameworkfor studying disambiguation methods and a number of new parsing techniques.Furthermore, the syntax de�nition formalism SDF was redesigned and improvedas the formalism SDF2.The second line of research was concerned with the extension of �rst-ordermany-sorted algebraic speci�cations to include polymorphism and higher-orderfunctions. This research followed-up on research done for my Master's thesis(Visser, 1993) that was partly dedicated to the study of higher-order functionsin a �rst-order framework. This resulted in a general interest in the area of typesystems and a particular interest in multi-level speci�cations. The result wasthe design of a multi-level algebraic speci�cation formalism.The third line combined the previous two in the study of two-level grammarsfor the purpose of polymorphic syntax de�nition.As a sideline I have always been interested in typesetting and literate pro-gramming. I continued to maintain the literate programming tool ToLATEX thatI took over from Paul Klint during the work on my Master's thesis. The wish toimprove the typesetting of terms in equations of speci�cations led to a coopera-tion with Mark van den Brand who was working on the generation of formatters.The cooperation was very fruitful and produced several results. A box calcu-lus was developed that was used to translate box terms for pretty-printing toTEX code (Van den Brand and Visser, 1994). A paper on the formatter gen-erator was published in the ACM Transactions on Software Engineering andMethodology (Van den Brand and Visser, 1996). This work, although relatedto syntax de�nition, is not represented in this thesis, except indirectly in theliterate speci�cations in Part II and Part III.
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1IntroductionLanguage prototyping is the activity of designing and testing de�nitions of newor existing computer languages. An important aspect of a language de�nitionis the de�nition of its syntax. The subject of this thesis are new formalisms andtechniques that support the development and prototyping of syntax de�nitions.There are four main subjects: (1) Techniques for parsing and disambiguation ofcontext-free languages. (2) Design and implementation of a new syntax de�ni-tion formalism. (3) Design of a multi-level algebraic speci�cation formalism. (4)Study of polymorphic syntax de�nition. This chapter sketches the backgroundand motivation of this work and gives an overview of the thesis.1.1 General1.1.1 Language PrototypingComputer languages are used to instruct computers or to encode data processedby computers. According to their application area languages are classi�ed asprogramming language, domain speci�c language, speci�cation language or dataformat.Language design is a recurrent activity in computer science and software en-gineering. Kinnersley (1995) lists about 2350 languages that have been designedsince computers were �rst developed in the 1940s. Bearing in mind that thislist contains only a fracion of all languages it is probably an underestimation tosay that a new language appears every week. New general purpose languagesare designed as new technology becomes available that poses new requirementsor provides new opportunities. A recent example is the Java programming lan-guage that addresses problems posed by exchanging programs over networks.New domain speci�c languages are developed to encapsulate domain knowledgepreviously expressed in a general purpose language.The design of a new computer language requires a considerable investment.By developing a prototype of the new language that contains its essential fea-tures at an early stage, its design can be tested and adjusted if necessary. Designtools can considerably speed up the design process by generating componentsof a prototype. 1



1 / introduction1.1.2 Language De�nitionsThe core of the design of a language is a language de�nition consisting of thedescription of its syntax and semantics. The syntax describes the form andstructure of its sentences. The semantics describes the meaning of the syntacticconstructs, which can vary from the interpretation of expressions as computerprograms to the translation of expressions to another language. A formal lan-guage de�nition is a de�nition of syntax and semantics in a formal languagespeci�cation formalism, consisting of a syntax de�nition formalism and a logi-cal or computational formalism for the expressing its semantics.Language prototyping involves testing a language de�nition by executing itas a computer program. Execution of a language de�nition comprises the syn-tactic analysis of expressions in the language according to the syntax de�nitionof the language and the computation of the semantics of syntactically correctexpressions. A speci�cation formalism is called executable if language de�ni-tions can be tested directly on a computer or if tools exist that construct exe-cutable computer programs from language de�nitions. A set of tools that sup-ports the development of programs or speci�cations in some language could becalled a programming environment. A programming environment for developinglanguages and their programming environments is called a meta-environment.Other requirements for language de�nition formalisms besides executability arethat they support the description of existing languages, that language de�ni-tions are extensible and can be combined with other language de�nitions, andthat the formalism is not overly restrictive.1.1.3 Syntax De�nition FormalismsA syntax de�nition formalism is a formal language for the speci�cation of thesyntactic rules of a language. The syntax describes the sentences of the lan-guages and assigns a structure to these sentences. An example of a syntax de�-nition formalism is the context-free grammar formalism introduced by Chomsky(1956). A context-free production A1 : : : An ! A0 determines that a sentenceof type A0 can be composed by concatenating sentences of type A1 to An inthat order. It can also be considered as a composition rule for trees: a tree oftype A0 can be composed by creating a new tree node labeled A0 with trees oftype A1 to An as direct descendants.In general, a syntax de�nition formalism can be characterized as follows. Asyntax de�nition (also called grammar) is a set of rules that describe how togenerate a set of trees. The concatenation of all leafs nodes of a tree (the yield)gives a sentence. The language de�ned by a grammar is the set of yields of thetrees it generates. A parser is a function that assigns to a sentence a tree thatrepresents its structure. If more than one tree has a sentence as its yield, thesentence is ambiguous. To solve ambiguities the syntax de�nition formalism mayprovide a disambiguation method that allows the formulation of disambiguationrules for selecting the intended tree for a sentence.This abstract approach to syntax is also applicable to the type systems of2



General / 1.1programming languages. A signature describes the valid typed expressions (thetrees), untyped expressions (the sentences) can be derived from the typed ex-pressions, a type checker analyses untyped expresssions and assigns them a type.In particular, it is applicable to algebraic signatures.1.1.4 Algebraic Speci�cation of LanguagesAn algebra is a set of data with operations on those data. In case of many-sorted algebras the data can be divided over a collection of sets. An algebraicspeci�cation is the description of an algebra. It consists of a signature declaringthe types of the algebraic operations and a logical formula describing propertiesof these operations. Several algebraic speci�cation formalisms have been devel-oped that use conditional equational logic as de�ning logic. Equations can beexecuted by interpreting them as rewrite rules.Rus (1972) and later also Goguen et al. (1977) showed that context-free gram-mars correspond to algebraic signatures (see also Hatcher and Rus (1976)). Thecomposition of a tree, i.e., the construction of a new tree from subtrees, cor-responds to the application of a function. In this view, languages correspondto algebras. A number of algebraic speci�cation formalisms (for instance, OBJ,Pluss, ASF+SDF, Elan) exploit this property by using signatures with mix�xoperators or even arbitrary context-free grammars instead of a pre�x signature.A de�nition can be viewed as a context-free grammar or as an algebraic sig-nature. The grammar view is used to generate parsers from a de�nition. Thesignature view describes the abstract syntax trees that are used by semantictools. A mapping from parse trees to abstract syntax trees is used as interfacebetween parser and semantic tool. In Heering et al. (1989) these views are madeexplicit by translating an SDF de�nition to a contex-free grammar (bnf) andto a �rst-order algebraic signature and by providing a translation from parsetrees to abstract syntax trees.1.1.5 ASF+SDFASF+SDF is an algebraic speci�cation formalism designed for the speci�cationand prototyping of programming language tools. It uses the syntax de�nitionformalism SDF for the de�nition of the syntax of a language. This enablesan expressive notation in speci�cations, since functions can be pre�x, post�x,in�x and mix-�x. Furthermore, the syntax of the programming language underconsideration is also expressed in these signatures. The semantics of a languagecan be de�ned by means of operations on the language speci�ed by means ofconditional equations.Language prototyping is supported by the ASF+SDF Meta-Environment(Klint, 1993, Van Deursen et al., 1996). It is an interactive development en-vironment for modular ASF+SDF speci�cations. Given a speci�cation of alanguage, a programming environment for that language is generated automat-ically. The use of incremental generation techniques makes that changes to thespeci�cation are immediately applied to the generated environment. This makes3



1 / introductionit possible to experiment with alternative designs.Although the formalism in combination with the Meta-Environment providesa powerful system for language prototyping, there are several shortcomings. Forinstance, it is not possible to generate stand-alone environments and the evalua-tion of equations by means of term rewriting is interpreted instead of compiled.Currently much research is invested in overcoming these shortcomings.1.1.6 Syntax De�nition for Language PrototypingThis thesis is concerned with the design and implementation of methods toenhance the expressive power and usability of the syntactic aspects of languagede�nition formalisms. The main theme is the development of techniques forproviding an expressive syntax de�nition formalism. The point of departure isthe syntax de�nition formalism SDF of Heering et al. (1989) that is used incombination with the algebraic speci�cation formalism ASF of Bergstra et al.(1989b). This setting provides the direct background and motivation for thiswork, but the techniques developed are applicable in other syntax de�nitionsettings as well. There are four main results:| Scannerless generalized-LR parsing is a new approach to parsing with-out scanners that solves a number of problems of conventional parsingtechniques, by combining the following techniques: parsing without scan-ner, generalized-LR parsing, static disambiguation with priority and asso-ciativity declarations, lexical disambiguation with follow restrictions andreject productions.| SDF2 is an expressive syntax de�nition formalism for context-free syntaxde�ntion. It is a redesign of SDF as a family of orthogonally de�nedfeatures for syntax de�nition.| The multi-level algebraic speci�cation formalism MLS extends �rst-ordermany-sorted algebraic speci�cation by making the sorts used in a signa-ture a user-de�nable algebraic data type. This provides a simple anduniform framework for the speci�cation of advanced type constructs in-cluding polymorphism and higher-order functions.| Polymorphic syntax de�nition is the combination of the exible notationfacilities of SDF with the exible typing facilities of MLS.Each of these subjects brings its own technical problems that are addressed inthis thesis. In the rest of this chapter we give an overview of this developmentand indicate the connections.1.2 Part I: Context-free Parsing TechniquesPart I describes techniques for parsing and disambiguation of context-free lan-guages.4



Part I: Context-free Parsing Techniques / 1.21.2.1 Scannerless Generalized-LR ParsingCurrent deterministic parsing techniques have a number of problems. Theseinclude the limitations of parser generators for deterministic languages and thecomplex interface between scanner and parser. Scannerless parsing is a pars-ing technique in which lexical and context-free syntax are integrated into onegrammar and are all handled by a single context-free analysis phase. This ap-proach has a number of advantages including discarding of the scanner andlexical disambiguation by means of the context in which a lexical token occurs.Scannerless parsing generates a number of interesting problems as well. Inte-grated grammars do not �t the requirements of the conventional deterministicparsing techniques. A plain context-free grammar formalism leads to unwieldygrammars, if all lexical information is included. Lexical disambiguation needsto be reformulated for use in context-free parsing.The scannerless generalized-LR parsing approach presented in Chapter 3solves these problems. Grammar normalization is used to support an expressivegrammar formalism without complicating the underlying machinery. Followrestrictions are used to express longest match lexical disambiguation. Rejectproductions are used to express the prefer keywords rule for lexical disam-biguation. An adaptation of the SLR(1) parser generation algorithm is usedto implement disambiguation by general priority and associativity declarationsand interprets follow restrictions. Generalized-LR parsing is used to providedynamic lookahead and to support parsing of arbitrary context-free grammarsincluding ambiguous ones. An adaptation of the GLR algorithm supports theinterpretation of grammars with reject productions.1.2.2 Disambiguation FiltersAn ambiguous context-free grammar de�nes a language in which some sen-tences have multiple interpretations. For conciseness, ambiguous context-freegrammars are frequently used to de�ne even completely unambiguous languagesand numerous disambiguation methods exist for specifying which interpretationis the intended one for each sentence. The existing methods can be divided in`parser speci�c' methods that describe how some parsing technique deals withambiguous sentences and `logical' methods that describe the intended interpre-tation without reference to a speci�c parsing technique.Chapter 4 proposes a framework of �lters to describe and compare a widerange of disambiguation problems in a parser-independent way. A �lter is afunction that selects from a set of parse trees (the canonical representation ofthe interpretations of a sentence) the intended trees. A number of general prop-erties of disambiguation �lters is de�ned and several case studies are discussedincluding disambiguation by means of priorities.1.2.3 Optimizing Parsing Schemata by Disambiguation FiltersAlthough disambiguation �lters give an abstract account of disambiguation,implementation of disambiguation by means of a �lter applied to the parse forest5



1 / introductionafter parsing can be too ine�cient for a number of disambiguation methods.Therefore, it would be attractive if a declaratively de�ned disambiguation �ltercould be e�ciently implemented by applying it during parsing or even duringparser generation.In Chapter 5 a study into the optimization of the composition of parsingalgorithms and disambiguation �lters is started, by considering two �lters basedon priorities. The �rst �lters a set of parse trees and selects trees without priorityconict. The second selects the trees which are lowest in the multi-set orderingon parse trees induced by the priority relation on productions.The theory of parsing schemata of Sikkel (1993) gives an abstract accountof parsing algorithms. In Chapter 5 the parsing schema for Earley's parsingalgorithm is optimized by applying the two priority �lters. For the priorityconict �lter this results in an optimized LR(0) parser generator that yieldsparsers that do not produce parse trees with a priority conict. This providesthe formal derivation of the imlementation rules presented in Chapter 3. Fora restricted case of the multi-set �lter an optimization of Earley's algorithm isderived.1.3 Part II: A Family of Syntax De�nition FormalismsThe formalism SDF is a syntax de�nition formalism for speci�cation of lexicaland context-free syntax of programming languages. The design of the formal-ism is rather monolithic, which makes it di�cult to extend with new features orexperiment with the implementation. In Part II SDF is redesigned and speci�edas a modular and extensible family of syntax de�nition formalisms. Each fea-ture is speci�ed as an extension of a kernel formalism, orthogonal with respectto other features. The meaning of most features is expressed in terms of theprimitives of the kernel formalism by means of normalization functions. One ofthe members of this family is SDF2, the successor of SDF.The syntax de�nition formalism SDF2 is a formalism for the concise de�nitionof context-free syntax. The semantic core of the formalism is formed by context-free grammars extended with character clases, priorities, follow restrictions andreject productions. Grammars in this basic format describe a set of parse treesto which strings are associated that form the language of the grammar. Inconnection with semantics speci�cation formalisms such as ASF, a grammar isinterpreted as a signature and the parse trees it generates as terms in the termalgebra generated by the signature. The implementation of SDF2 consists ofa grammar normalizer, a parser generator and a generic parser. It supportsarbitrary context-free grammars using the GLR parsing algorithm.One of the main contributions of SDF2 is the complete integration of lexicaland context-free syntax. The formalism supports the de�nition of lexical andcontext-free syntax providing a separate name space for symbols such that inter-ference is prevented. The grammar normalizer integrates lexical and context-freesyntax into a single context-free grammar. The scannerless parser generated forsuch a grammar reads input characters directly and combines lexical analysis6



Part III: Multi-Level Algebraic Speci�cation / 1.4with context-free analysis in a single parsing phase.Ambiguous grammars can be disambiguated by means of three disambigua-tion facilities. Priority and associativity declarations can be used to disam-biguate mix�x expression grammars in a very general way. Disambiguation bymeans of priorities is implemented in the parser generator. For the disambigua-tion of lexical ambiguities two features are introduced. With follow restrictionsthe follow-set of grammar symbols can be restricted, which enables the expres-sion of the `prefer longest match' disambiguation rule. With reject productionsone can express the `prefer keywords' rule. Follow restrictions are interpretedduring parser generation, reject productions are interpreted during parsing.Other disambiguation methods can be de�ned as �lters on parse forests (com-pact representations of sets of parse trees). Due to the open design of the SDF2implementation such �lters can be easily attached to the parser. A number ofcase studies of disambiguation �lters are discussed in Chapter 4.Other features of SDF2 are literals, an expressive set of regular expressions,and symbol aliases that serve to abbreviate complicated regular expressions.Furthermore, the formalism supports modular syntax de�nitions and exiblereuse of modules by means of symbol and production renamings.Many of the features are de�ned in terms of the core features by means of anormalization function on syntax de�nitions. The formalism can be coupled toany semantics speci�cation language based on �rst-order many-sorted signaturesproviding user-de�nable syntax. The modular design of the formalism supportsexperiments with new features.Chapter 6 gives an introduction to SDF2 and discusses the approach of de-signing it as a family of syntax de�nition formalisms. Chapter 7 de�nes thekernel of the family consisting of context-free grammars with sorts, characterclasses and literals. The semantics of the formalism is de�ned by means of awell-formedness predicate on parse trees characterizing the trees generated bya grammar. Chapter 8 de�nes disambiguation by means of priorities, follow re-strictions and reject productions. Regular expressions are de�ned to abbreviateseveral common patterns in syntax de�nitions such as lists, optional constructsand tuples. The integration of lexical and context-free syntax is de�ned. Chap-ter 9 introduces a renaming operator on grammars that can be used to renamesorts and productions. Renamings are then used to de�ne symbol aliases. Amodule mechanism is de�ned that supports the modularization of syntax def-initions. Modules can be parameterized with a list of symbols and renamingscan be applied to imports. Chapter 10 discusses the assembly of SDF2 from thefeatures de�ned in the previous chapters and discusses possible improvements.1.4 Part III: Multi-Level Algebraic Speci�cationPolymorphic, higher-order functions in functional programming languages pro-vide a powerful abstraction method to construct reusable software. The �rst-order signatures provided by conventional many-sorted �rst-order algebraic spec-i�cation formalisms (such as ASF+SDF) do not support polymorphic or higher-7



1 / introductionorder functions. In Part II a multi-level algebraic speci�cation formalism is de-signed and speci�ed in order to study the extension of �rst-order formalismswith polymorphism and higher-order functions.The multi-level speci�cation formalism MLS extends �rst-order many-sortedalgebraic speci�cation by making the algebra of types a user-de�nable data type.The structure of the types used in the signature of a speci�cation is speci�edby means of an algebraic speci�cation itself. This process is formalized in amulti-level setting. The terms over a signature at level i + 1 can be used astype expressions at level i. Variables in type expressions are interpreted asuniversally quanti�ed type parameters. Function declarations with such a uni-versally quanti�ed type are interpreted as declaration schemata for functionswith closed type expressions and thus represent polymorphic functions and con-stants. Functions can also be overloaded, i.e., have more than one type. Theterm structure is applicative, enabling higher-order functions. The formalismsupports modular speci�cations.The formalism MLS is de�ned by means of a speci�cation in ASF+SDF.This speci�cation also forms the basis for a prototype environment for MLS.The environment consists of a typechecker that is de�ned in terms of a well-formedness checker and a type assignment procedure. Type assignment is anextension of the Hindley/Milner algorithm to many-sorted types, multi-levelsand overloading of functions. Furthermore, the environment contains a termrewrite interpreter for equations in speci�cations.Applications of multi-level speci�cations include all functional programs ex-pressible in a Hindley/Milner system. Due to the many-sortedness of the sig-natures of types and kinds (as opposed to the single-sorted types of functionallanguages) more distinction can be made in type assignment. This enables thede�nition of data types such as strati�ed stacks and tuples. By means of equa-tions over types still more advanced typing constructs can be modeled. Anexample is the type of the zip function that maps a list of tuples to a tupleof lists. Other applications of type equations are type abbreviations, recursivetypes, record types, the polytypic functions of Jansson and Jeuring (1997), thetype classes of Haskell and the constructor classes of Jones (1993). The speci�-cation of type assignment presented here only deals with syntactic equality andnot with equality modulo type equations.Chapter 11 gives an introduction to the formalism and discusses related work.Chapter 12 handles the case of speci�cations consisting of a single level. Thiscorresponds to �rst-order algebraic speci�cation. First an untyped equationalspeci�cation formalism with equational logic and term rewriting is de�ned. Thisis extended with a �rst-order monomorphic applicative type system. In Chap-ter 13 the possibilities of multi-level speci�cations are explained by means ofa number of example speci�cations. The formalism is de�ned in Chapter 14,building on the language of Chapter 12. Appendix B de�nes several auxiliarytools such as substitution, matching and uni�cation.
8



Part IV: Polymorphic Syntax De�nition / 1.51.5 Part IV: Polymorphic Syntax De�nitionThe signatures of multi-level speci�cations only support pre�x and in�x func-tions. Chapter 15 develops theory to combine the type exibility of multi-levelspeci�cations with the notational exibility of context-free grammars.The combination of the idea of grammars as signatures with multi-level al-gebraic speci�cation leads to a multi-level grammar formalism. In a multi-levelgrammar the set of non-terminals becomes a user-de�nable data type in thesame way as the types in multi-level speci�cations. Moreover, types and objectlevel data are speci�ed by means of a context-free grammar instead of with asignature, leading to exible notation.The combination provides a formalism for polymorphic syntax de�nition, inwhich common language constructs can be described generically and reused inmany speci�cations. It turns out that while both formalisms have a decidabletype-assignment/parsing problem, the combination in its full generality has anundecidable parsing problem. However, a subset of such multi-level grammarscan be characterized that have a decidable parsing problem, while not being toorestrictive for use in abstract data type speci�cation. For this class of grammarsthat satisfy the �nite-chain property, a parsing algorithm is presented.When restricted to two levels we have a formalism that is similar to VanWijngaarden grammars. The di�erence is that VWGs use derived strings withvariables (sentential forms) as types at level 0, while our two-level grammarsuse parse trees with variables. This restriction ensures that syntactic uni�ca-tion is decidable, which it is not in VWGs. The further restriction of two-levelgrammars to grammars that satisfy the �nite-chain property results in gram-mars with a decidable parsing problem. Van Wijngaarden grammars were notsuccesful in executable de�nition of programming languages. The discovery that�-productions could be used to encode the static and even dynamic semantics ofa language led to a formalism with a very di�cult parsing problem. This sparkeddevelopments in the usage of VWGs as a programming language instead of agrammar formalism. In Chapter 15 it is shown that this development has hid-den the very useful application of two-level grammars to polymorphic syntaxde�nition, opening the exibility of polymorphism to grammar development.1.6 Short TripsThe main theme of this thesis is that of improving formalisms and techniquesfor syntax de�nition in support of language prototyping. The organization ofthis thesis reects the development from context-free syntax de�nition, throughmulti-level speci�cations to polymorphic syntax de�nition. For the reader inter-ested in subsets of these subjects we suggest some alternative itineraries throughthis thesis.Three Formalisms For a quick overview of the formalisms developed in thisthesis look at the following sections with examples: x6.2 discusses the mainfeatures of SDF2 illustrated by means of an example. The main features of MLS9



1 / introductionare discussed in x11.2. A large number of examples of multi-level speci�cationsare presented in x13.1. x15.4 presents several examples of two-level grammarsused for data type speci�cation.Priorities The de�nition and implementation of priorities is presented in acouple of sections. x3.4 gives a short overview of disambiguation with priorities.A more precise de�nition of the interpretation of priorities as disambiguation�lters is presented in x4.5. The derivation of the e�cient implementation ofpriorities during parser generation is presented in Chapter 5. Rules for theimplementation of a parser generator are presented in x3.5.Parsing Parsing of context-free grammars extended with character-classes,priorities, follow restrictions and reject productions is discussed in Chapter 3.Parser generation in x3.5 and the adaptation of the GLR algorithm in x3.8. Aparsing algorithm for two-level grammars is presented in x15.6.Disambiguation For disambiguation by means of priorities see above. Otherdisambiguation methods for context-free grammars are discussed in Chapter 4.Parse forests are the subject of x3.8 and x7.5.5. Disambiguation is also an issuein type assignment for signatures with overloaded functions. In x14.4.2 the typeassignment for multi-level speci�cations with overloading is presented.ATerms The annotated term format (ATerms) of Van den Brand et al.(1997a) is a generic, untyped format for the representation of structured data.ATerms are used in Chapter 7 to represent parse trees and parse forests. Thede�nition of the subset of ATerms that represent well-formed parse forests isgiven in x7.5.5. ATerms and their role in data representation are also discussedin x15.2.3.Terms & Term Rewriting In Part II terms also play an important role. InChapter B a number of standard operations such as substitution, matching anduni�cation on terms are de�ned. In x12.1.4 these tools are used to specify aterm rewrite interpreter of equations.Type Systems The chapters in Part III present the speci�cation of an ad-vanced type system. Grammars can also be considered as signatures. The viewof grammars as signatures is discussed in Chapter 7 and Chapter 15.Coupling of Syntax to Semantics In x9.3 an example is given of the couplingof user-de�nable syntax to conditional equations. In Chapter 12 and Chapter 14the typing of equations given a signature is discussed.Language Design In Part II the speci�cation of SDF2 is presented. Severalconsiderations in the design of the formalism are discussed in x6.3. In Chapter 12the speci�cation of a simple applicative equational speci�cation formalism ispresented. The speci�cation includes a discussion of equational logic, termrewriting, well-formedness under a signature and type assignment.10



Origins of the Chapters / 1.7Literate Speci�cation Part II presents the speci�cation of the syntax def-inition formalism SDF2. Part III presents the speci�cation of a multi-levelalgebraic speci�cation formalism. These speci�cations were written as literatespeci�cations. The typeset speci�cations with comments were prepared usingthe ASF+SDF Meta-Environment.1.7 Origins of the ChaptersMost of the chapters in this thesis were published before as separate papers.We list their origin.| Chapter 3 on the scannerless generalized-LR parsing approach is a newpaper that gives an overview of the design and implementation of theSDF2 normalizer, parser generator and parser. It appeared as a technicalreport (Visser, 1997f).| Chapter 4 on disambiguation �lters is joint work with Paul Klint. Itpresented under the title using �lters for the disambiguation of context-free grammars at the ASMICS Workshop on Parsing Theory in Milan andappeared in the proceedings (Klint and Visser, 1994).| Chapter 5 was presented at the Accoladef95 conference on logic in Ams-terdam and appeared in the proceedings (Visser, 1995a). It has been ac-cepted for presentation at the International Workshop on Parsing Technol-ogy (IWPT'97) in Boston and for publication in the proceedings (Visser,1997a).| Part II on the speci�cation of SDF2 as a family of syntax de�nition for-malisms is an update and extension of a paper that was presented at theASF+SDF'95 workshop onGenerating Tools from Algebraic Speci�cationsand appeared in the proceedings (Visser, 1995b). In its current form itappeared as a technical report (Visser, 1997d).| Part III appeared as a single chapter in the book Language Prototyping.An Algebraic Speci�cation Approach (Visser, 1996a). The version in thisthesis has been split up in �ve chapters and several example speci�cationshave been added. Furthermore, the speci�cation has been improved in afew places.| An extended abstract of Chapter 15 was presented at the AMAST work-shop on Algebraic Methods in Language Processing (AMiLP'95) in En-schede and was published in the proceedings (Visser, 1995c). The currentversion is accepted for publication in a special issue of Theoretical Com-puter Science dedicated to the workshop (Visser, 1997e).
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2Speci�cation in ASF+SDFASF+SDF is a �rst-order many-sorted algebraic speci�cation formalism de-signed for the speci�cation of computer languages. Development of ASF+SDFspeci�cations is supported by the ASF+SDF Meta-Environment that generatesa programming environment from the speci�cation of a language. This chaptergives an introduction to the basic notions of ASF+SDF.2.1 IntroductionAlgebraic speci�cation is concerned with the formal description of abstract datatypes. An algebraic speci�cation consists of a signature describing the structureof the data type|sorts of data and operations on the data|and expressionsin some form of logic that de�ne the meaning of the operations. An algebraicspeci�cation formalism is characterized by the form of the signatures, the logicand additional features supporting speci�cation development.ASF+SDF is a modular algebraic speci�cation formalism with �rst-order,many-sorted signatures and conditional equations. It is the union of the al-gebraic speci�cation formalism ASF and the syntax de�nition formalism SDF.An important feature of the formalism is the use of context-free grammars assignatures (the contribution of SDF), providing an expressive notation for func-tions. This feature makes the formalism well suited for programming languagespeci�cation. The signature describes the concrete syntax of a language andfunctions can be de�ned directly on the concrete constructs.Development of speci�cations is supported by means of the interactive, in-cremental ASF+SDF Meta-Environmnent. It is called a meta-environmentbecause it supports the generation of programming environments from speci-�cations. Tool support for literate speci�cation encourages the documentationof speci�cations.In this chapter we give an introduction to ASF+SDF. In x2.2 and x2.3 wediscuss algebraic structure, signatures and the use of grammars as signatures.In x2.4 and x2.5 we discuss equational logic and its operationalization by meansof term rewriting. In x2.7 we discuss the ASF+SDF Meta-Environment. Inx2.8 we discuss the documentation of speci�cations as literate speci�cations.In x2.9 we discuss some concepts related to the speci�cation of programming13



2 / specification in asf+sdflanguages. We conclude in x2.10 with references to the literature on ASF+SDFand algebraic speci�cation.2.2 Many-Sorted AlgebraAn algebra is a collection of values or data A with constants a 2 A and oper-ations f : An ! A working on the values. A many-sorted algebra is a family(A(s) j s 2 S) of such collections of data indexed by a set of sorts S with a collec-tion of constants c 2 A(s) and a collection of functions f : A(s1)�� � ��A(sn)!A(s0).The structure of an algebra can be described by means of a signature. Asignature consists of the declaration of the sorts (names for the collections) andthe declaration of the constants and functions of an algebra. (In other contextssignatures are also called interfaces.) For example, the following signature de-scribes an algebra consisting of two sorts Bool and Nat and several operationson those sorts.sorts Bool Natfunctionstrue : Boolfalse : Boolnot : Bool -> Booland : Bool # Bool -> Boolzero : Natsucc : Nat -> Natplus : Nat # Nat -> Natgeq : Nat # Nat -> BoolA declaration c : s declares a constant c of sort s. A declaration f : s1# : : :#sn !s0 declares a function with n arguments of sorts s1 : : : sn and result sort s0, i.e.,a function f : A(s1)� � � � �A(sn)! A(s0).There are many algebras corresponding to a signature. Each structure thathas the prescribed sets of data and operations on them is considered an algebrain the family of algebras described by a signature. A special algebraic structurein this family is the term algebra T(�) corresponding to a signature �. The dataof this algebra are terms over the signature, which are constructed according tothe following rules.(Constants) If c : s is a constant declaration, i.e., an element of the functiondeclarations F(�) of �, then c is a term of sort s.c : s 2 F(�)c 2 T(�)(s)(Functions) If f : s1# : : :#sn ! s0 is a function declaration and ti for 1 �i � n are terms of sort si, then f(t1; : : : ; tn) is a term of sort s0.f : s1# : : :#sn ! s0; ti 2 T(�)(si)f(t1; : : : ; tn) 2 T(�)(s0)14



Grammars as Signatures / 2.3For example, according to these rules the expressionnot(geq(zero(), plus(succ(zero()), zero())))is a term of sort Bool in the signature above.The term algebra over a signature is special because it is initial in the familyof algebras for the signature. For each algebra A in Alg(�) there is a uniquetranslation from the term algebra T(�) to A. This is the interpretation functionIA de�ned as follows: IA(c) = cAIA(f(t1; : : : ; tn)) = fA(IA(t1); : : : ; IA(tn))Here cA is the value of the constant c in A and fA is the function correspondingto f in A. The fact that the term algebra is initial has another consequence, itmeans that it has `no junk', i.e., all values in the algebra correspond to a term.2.3 Grammars as Signatures2.3.1 Context-free SyntaxIn ASF+SDF signatures are speci�ed by means of a context-free grammar inthe form of a syntax de�nition in SDF. Basically, an SDF de�nition consists of adeclaration of sorts listing all the sorts and a context-free syntax section declar-ing the functions. The di�erences with signatures is that the names of functionsare not restricted to pre�x functions, but patterns that can be written before,in between and after the arguments of the function. A function declaration isof the form l0 s1 l1 : : : ln sn ln+1 ! s0, where the li are lists of zero or moreliterals and the si are sorts. A literal is a string of characters between doublequotes that indicates a part of the function name that is to be written literally.Corresponding to the signature of Boolean and natural number values in theprevious example we can de�ne a grammar of Boolean and natural numbervalues:sorts Bool Natcontext-free syntax"true" -> Bool"false" -> Bool"not" Bool -> BoolBool "and" Bool -> BoolBool "or" Bool -> Bool"0" -> Nat"s" "(" Nat ")" -> NatNat "+" Nat -> NatNat "*" Nat -> NatNat ">=" Nat -> Bool 15



2 / specification in asf+sdf2.3.2 Parse Trees as TermsAgain, we can formulate rules for the construction of terms over such syntaxde�nitions. Let G be a context-free grammar, S(G) the set of sorts of grammarG, and P(G) the set of productions of G.(Constants) If l ! s is a constant context-free syntax rule (without sorts onthe left-hand side), then l is a term of sort s.l ! s 2 P(G)l 2 T(G)(s)(Functions). If l0 s1 l1 : : : ln sn ln+1 ! s0 is a context-free syntax rule and tifor 1 � i � n are terms of sort si, then l0 t1 l1 : : : ln tn ln+1 is a term of sort s0.l0 s1 l1 : : : ln sn ln+1 ! s0 2 P(G); ti 2 T(G)(si)l0 t1 l1 : : : ln tn ln+1 2 T(G)(s0)For example, the expressionnot 0 >= s(0) + 0is a term of sort Bool in the syntax de�nition above.2.3.3 PrioritiesOne problem with this de�nition is that terms can be ambiguous. For instance,the term 0 + 0 + 0 is a term of sort Nat in two ways, depending on whetherwe take + left or right associative. In SDF this problem is solved by declaringthe associativity and priority of functions. The attributes fleftg, frightg andfassocg declare a function to be left-associative, right-associative or simplyassociative, respectively. By means of priorities one can express that a functionhas higher priority than another function. For example, the operations for thenatural numbers in the grammar above can be disambiguated in the followingmanner:context-free syntaxNat "+" Nat -> Nat {left}Nat "*" Nat -> Nat {left}"(" Nat ")" -> Nat {bracket}prioritiesNat "*" Nat -> Nat >Nat "+" Nat -> NatThis gives multiplication higher priority than addition and declares both oper-ators as left associative.In order to override the declared priorities one can introduce bracket functions,function declarations of the form l0 s l1 ! s fbracketg. Such functions areidentity functions, i.e., we have the implicit identity l0 t l1 = t. For instance, inthe example above, parentheses are declared as brackets for natural numbers,such that16



Grammars as Signatures / 2.3s(s(0)) * (s(s(0)) + s(0))can be written to override the priority of * over +.2.3.4 ListsSDF has special support for functions that have an arbitrary number of argu-ments of the same sort. For example, the declarationcontext-free syntaxprogram FunDef* -> Programdeclares that the function program constructs a Program from zero or morefunction de�nitions.2.3.5 InjectionsASF+SDF permits \syntax-less" chain rules for injecting a sort into anothersort. For example, to de�ne that a natural number is an integer we declarecontext-free syntaxNat -> Int2.3.6 Lexical SyntaxSyntax de�nitions do not only de�ne the syntax of sentences, the context-freesyntax, but also de�ne the syntax of words, the lexical syntax. We have alreadyseen literals that describe exactly one word. The literal "true" indicates thatthe word consisting of the letters t, r, u and e is a unit of the language. Def-initions can also contain a lexical syntax section that describes collections ofwords. For example, the de�nitionsorts Idlexical syntax[a-z][a-zA-Z0-9]* -> Idde�nes that identi�ers (sort Id) are words starting with a lowercase letter fol-lowed by zero or more letters or digits.2.3.7 LayoutThe words in sentences can be separated by whitespace and comments. Whatexactly constitutes this so called layout has to be de�ned in the lexical syntaxsection. A conventional de�nition is the followinglexical syntax[ \t\n] -> LAYOUT"%%" ~[\n]* -> LAYOUTIt de�nes spaces, tabs and newlines as whitespace and furthermore de�nes ev-erything on a line after two percent signs as comments. 17



2 / specification in asf+sdf2.4 Conditional EquationsNow we have seen how algebraic structure of data can be speci�ed by meansof signatures and grammars, but we have said nothing about their meaning. InASF+SDF conditional equations are used to describe the meaning of functions.Equations de�ne functions by specifying the equality of terms. An equation ofthe form t = s declares the terms t and s to be equal. For example, the followingequations de�ne addition and ordering of natural numbers.equations[0] 0 + n = n[1] s(n) + n' = s(n + n')[2] 0 > n = false[3] s(n) > 0 = true[4] s(n) > s(n') = n > n'The tags [x] before the equations are for documentation purposes only.A conditional equation has the form:t1 = s1; : : : ; tn = snt = s or t = s when t1 = s1; : : : ; tn = snIt declares that term t is equal to term s, if ti equals si for 1 � i � n.2.5 Term RewritingFor sets of equations respecting certain criteria, equality of terms can be de-cided by interpreting the equations as term rewrite rules to simplify a term tonormal form. Term rewriting is the process of repeatedly replacing a subtermthat matches the left-hand side of an equation by the correspondingly instanti-ated right-hand side of the equation until no such subterm can be found. Theresulting term is in normal form.2.6 ModularizationA speci�cation can be divided in a number of modules. A module can bereused by importing it in other modules. The signature of a module is dividedin an export and an import part. Items in the exported signature are visiblein modules that imported the module. Hidden items are for use in the moduleitself and are invisible to other modules. Currently, ASF+SDF does not supportrenamings of sorts or functions or parameterized modules. This entails thatinstantiations of a data type have to be created by copying a module.2.7 The ASF+SDF Meta-EnvironmentThe ASF+SDF Meta-Environment is a programming environment for the de-velopment of ASF+SDF speci�cations. The environment provides editors for18



Literate Speci�cation / 2.8editing and type checking modules. Speci�cations can be tested by opening aterm editor over some module. Such a term editor provides a basic programmingenvironment for the language being de�ned. The basic operations on terms interm editors are checking of the syntax and reducing a syntactically correct termto its normal form according to the equations in the speci�cation.2.8 Literate Speci�cationSpeci�cations can be used to prototype languages and programming environ-ments, but are meant in the �rst place as language descriptions for implementorsand users of the language. Therefore, it is important that speci�cations are doc-umented properly. Maintaining the documentation of a speci�cation separatelyfrom the speci�cation itself is a guarantee for a divergence between the two.Therefore, documentation of ASF+SDF speci�cations is supported by meansof literate speci�cation. The speci�cation developed and tested in the Meta-Environment is also the basis for the documentation. The documentation isgenerated automatically from the speci�cation by means of a literate speci�ca-tion tool for ASF+SDF. The tool|appropriately called ToLATEX|translates anASF+SDF speci�cation to LATEX code for typesetting. Comments in the speci-�cation are passed directly to LATEX. The syntax declarations and equations ofa speci�cation are typeset. To accommodate the use of mathematical symbols,ToLATEX is parameterized with a user extendable mapping from ASCII symbolsto LATEX commands. For instance >= can be mapped to \geq, which comes outas �. All speci�cations in this book have been prepared in this manner.2.9 Speci�cation of Programming LanguagesWe discuss some terminology and conventions in the usage of ASF+SDF for thespeci�cation of programming languages. In ASF+SDF a programming languageis considered a data type. The speci�cation of a programming language consistsof a speci�cation of the syntax, the strings that are sentences of the language,a description of the semantics, the meaning of sentences of the language, and adescription of the context-sensitive requirements on sentences.2.9.1 Language ProcessorsWe distinguish several basic tools used in manipulating programs in a program-ming language.| A parser determines whether a string is a syntactically correct sentence ofthe language.| A typechecker checks context-sensitive requirements, mainly with respectto type declarations.| An interpreter computes the value for a program and its input. 19



2 / specification in asf+sdf| A compiler translates a program to a program in another language.| A program transformation tool transforms a program in another programin the same language.Parsers are generated automatically from the syntax de�nition of the language.Type checkers, interpreters and compilers are de�ned by means of functions inthe speci�cation.2.9.2 Programming EnvironmentsA programming environment is a collection of tools supporting the developmentof programs in a programming language. In addition to parsers, type checkers,interpreters and compilers such environments may contain the following tools:| A (structure) editor is used to create and maintain the program text andinvoke other tools. In the ASF+SDF Meta-Environment structure editorsare generated from the syntax de�nition of a language.| A debugger helps �nding errors in programs.| A pretty-printer transforms the text of a program such that it becomesmore readable.| A typesetter typesets a program for printing and usage in program docu-mentation.| Semantics analysis tools help in understanding a program and �ndingerrors in them.| A version manager supports maintenance of versions and con�gurations.2.9.3 Structure of a Speci�cationASF+SDF does not enforce a modularization style for speci�cations of program-ming languages. To promote reuse and extensibility, we use the following style.The speci�cation of a programming language is de�ned in several modules thatcan be classi�ed as:| Syntax modules describe the syntax of the language. If it concerns a largerlanguage we divide the syntax in several modules containing parts of thelanguage that belong together. Some languages can be divided in a kerneland several extensions to it.| Data type modules describe auxiliary data structures.| Interpreter modules describe the evaluation function for language con-structs.For each other kind of processor, a separate module is introduced.An extension of a language consists of a syntax module for the syntax of thenew constructs, a data type module describing additional data structures andan interpreter module describing the extension of the evaluation function.20



Literature / 2.102.10 LiteratureThe algebraic speci�cation formalism ASF and algebraic speci�cation with ASFand ASF+SDF are introduced in Bergstra et al. (1989a). The syntax de�nitionformalism SDF is de�ned in Heering et al. (1989). The principles of the imple-mentation of the ASF+SDF Meta-Environment are described by Klint (1993).Directions for the usages of the ASF+SDF Meta-Environment can be found inKlint (1995). Literate ASF+SDF speci�cation is described in Visser (1994a,1994b). Case studies and experience with ASF+SDF are described in variouspublications. In a recent book Van Deursen et al. (1996) give an introduction toASF+SDF as language prototyping formalism using a number of advanced casestudies, mainly in type checking, and present several research issues. Recentadvances in research in this area are reported on in the ASF+SDF workshops(Van den Brand et al., 1995, Sellink, 1997).Background on universal algebra can be found in Meinke and Tucker (1992)and Wechler (1992). Literature on algebraic data type speci�cation includesLoeckx et al. (1996).
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Part IContext-Free Parsing Techniques
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3Scannerless Generalized-LRParsingCurrent deterministic parsing techniques have a number of problems. Theseinclude the limitations of parser generators for deterministic languages and thecomplex interface between scanner and parser. Scannerless parsing is a pars-ing technique in which lexical and context-free syntax are integrated into onegrammar and are all handled by a single context-free analysis phase. This ap-proach has a number of advantages including discarding of the scanner andlexical disambiguation by means of the context in which a lexical token occurs.Scannerless parsing generates a number of interesting problems as well. Inte-grated grammars do not �t the requirements of the conventional deterministicparsing techniques. A plain context-free grammar formalism leads to unwieldygrammars, if all lexical information is included. Lexical disambiguation needsto be reformulated for use in context-free parsing.The scannerless generalized-LR parsing approach presented in this chaptersolves these problems. Grammar normalization is used to support an expressivegrammar formalism without complicating the underlying machinery. Follow re-strictions are used to express longest match lexical disambiguation. Reject pro-ductions are used to express the prefer keywords rule for lexical disambiguation.The SLR(1) parser generation algorithm is adapted to implement disambigua-tion by general priority and associativity declarations and to interpret followrestrictions. Generalized-LR parsing is used to provide dynamic lookahead andto support parsing of arbitrary context-free grammars including ambiguous ones.An adaptation of the GLR algorithm supports the interpretation of grammarswith reject productions.3.1 IntroductionParsing is one of the areas of computer science where program generation is aroutine technique that is successfully applied to generate parsers for program-ming languages given their formal de�nition by means of a context-free gram-mar. At least, in theory. In practice, most parser generators accept only a lim-25



3 / scannerless generalized-lr parsingited subset of the context-free grammars such as LL(1) or LALR(1) grammars.Since most natural grammars for languages do not respect these limitations,the language designer or compiler writer has to bend over backwards to �t thegrammar into the restrictions posed by the grammar formalism by rewritinggrammar rules, introducing ad-hoc solutions for parse table conicts or resort-ing to side e�ects in the parser. Even if one succeeds in producing a grammarthat respects the restrictions, a small extension or modi�cation of the languagemight jeopardize the careful balance of tricks, which makes maintenance of toolsfor the language troublesome.Another source of problems in generated parsers is the division between thelexical analysis phase and the context-free analysis phase and the correspondingdivision of the grammar into a regular grammar de�ning the lexical syntax anda context-free grammar de�ning the context-free syntax. A scanner divides thecharacter string into tokens according to the lexical syntax. A parser structuresthe token string into a tree according to the context-free syntax.At the interface between scanner and parser the lexical tokens are passedfrom the scanner to the parser. In the most straightforward scenario the scan-ner produces a stream of tokens without intervention from the parser. Thisentails that no knowledge of the parsing context is available in the scanner andthus no lexical analysis decisions can rely on such information. It is di�cultto unambiguously de�ne the lexical syntax of a language by means of only reg-ular grammars. Therefore, lexical analysis and the interface with context-freeanalysis are usually extended. First lexical disambiguation heuristics such as`prefer longest match' and `prefer keyword' are applied to reduce the number ofreadings. If there remain ambiguities after application of these rules the scannermight produce multiple streams of tokens representing all possible partitioningsof the string into tokens according to the regular grammar. The parser shouldthen be able to cope with this non-linear input. It is also possible to supply feed-back from the parser to the scanner to reduce the number of applicable grammarrules. For instance, by specifying the lexical categories that are expected forthe next token.In all such schemes lexical analysis becomes more complicated than the simple�nite automaton model that motivated the use of regular grammars. Context-free parsing functionality starts to appear both inside the scanner and at theinterface between scanner and parser and often operational elements corruptthe declarativity of the language de�nition. As a consequence, many grammarsare ambiguous if only the pure regular and context-free grammar are consideredas such and reasoning about the language being de�ned becomes di�cult.3.1.1 Scannerless Generalized-LR ParsingIn this chapter we describe an approach to syntax de�nition and parser gen-eration that overcomes many of these problems. The approach is based onthe integration and improvement of scannerless parsing, generalized-LR parsingand grammar normalization. Because of the integration of the former two, theapproach is called scannerless generalized-LR parsing.26



Introduction / 3.1Scannerless Parsing Scannerless parsing is a parsing technique that does notuse a scanner to divide a string into lexical tokens. Instead lexical analysis isintegrated in the context-free analysis of the entire string. It comes up naturallywhen considering grammars that completely describe the syntax of a language.The term scannerless parsing was coined by Salomon and Cormack (1989, 1995).They use `complete character level grammars' describing the entire syntax of alanguage down to the character level. Since conventional LR parser generationyields tables with too many conicts, they use an extension of SLR(1) parsergeneration called non-canonical SLR(1). However, even this extension makes ithard to de�ne a grammar without conicts.Generalized-LR Parsing The conventional LR parsing techniques and espe-cially scannerless LR parsing su�er from conicts in the parse table. There aretwo causes for conicts in LR parse tables: ambiguities and lack of lookahead.If a conict is caused by an ambiguity, any of the possible actions will lead to asuccessful parse. If it was caused by a lookahead problem, one of the actions willlead to success and the others will fail. Which action will be successful cannotbe decided statically. Since ambiguity of a context-free grammar is undecidable(Floyd, 1962), it is also undecidable whether a conict is due to an ambiguity orto a lack of lookahead. Because complete character level grammars frequentlyneed arbitrary length lookahead, methods to solve conicts in the table will notalways succeed.Generalized-LR parsing is an extension of LR parsing that interprets the con-icts in the parse table by forking o� a parser from the main parser for eachpossible action in case of a conict. If such a conict turns out to lead to anambiguity the parser constructs a parse forest, a compact representation of allpossible parse trees for a sentence. But if the conict was caused by lack of looka-head, the forked parsers for the wrong track will fail. In this manner lookaheadis handled dynamically. Therefore, generalized-LR parsing is an ideal techniqueto solve the lookahead problems of scannerless parsing. Generalized-LR pars-ing was introduced by Tomita (1985) building on the theoretical framework ofLang (1974). It was improved by Rekers (1992) to handle all context-free gram-mars. In this chapter we extend Rekers' version of the algorithm with rejectreductions, a facility needed for lexical disambiguation.Grammar Normalization An aspect of the division between lexical and con-text-free syntax that a�ects the speci�cation of syntax is the de�nition of layout,i.e., the whitespace and comments that can occur at arbitrary places betweentokens. In the conventional setting layout is analyzed by the scanner and thenthrown away. The parser never sees the layout tokens. Therefore, layout canalso be ignored in the speci�cation of context-free syntax. However, in a com-plete character level grammar all aspects of the syntax are completely de�ned,including the syntax and positions of layout. This can lead to rather unwieldygrammars that declare the occurrence of layout as separator between all gram-mar symbols in context-free productions.Grammar normalization is a technique used to de�ne an expressive gram-mar formalism in terms of simple context-free grammars. An example of a27



3 / scannerless generalized-lr parsingnormalization procedure is the addition of layout symbols between the sym-bols in context-free productions. Other examples are the de�nition of regularexpressions by means of productions and the attening of modular grammars.An important aspect of the scannerless generalized-LR approach is the use ofgrammar normalization to keep grammars small and usable. The syntax de�ni-tion formalism SDF2 used in the approach is a formalism for concise de�nitionof complete character level grammars. SDF2 is a generalization of the syntaxde�nition formalism SDF of Heering et al. (1989). The formalism and normal-ization procedure is de�ned in Part II.3.1.2 ArchitectureThe typical architecture of an application of SDF2 is depicted in Figure 3.1.A program text1 processor that transforms text into text is composed of (1) aparser front-end that analyzes the input text and produces a structured repre-sentation of the text in the form of a parse tree, (2) the actual processor thatperforms a transformation from a parse tree to another one and (3) a pretty-printer back-end that produces text corresponding to a transformed parse tree.Processors can be, for instance, interpreters, compilers, data ow analyzers orprogram transformation tools.The input language of a processor is speci�ed in the syntax de�nition formal-ism SDF2. Given a language de�nition in SDF2 and a tree to tree processor, thecorresponding text to text processor is constructed using a grammar normalizer,a parser generator, a parser and a pretty-printer generator.Grammar Normalizer A language de�nition in SDF2 is normalized to a plaincontext-free grammar extended with character classes, priority rules, follow re-strictions and reject productions. Normalization is briey discussed in x3.3. Afull de�nition of SDF2 normalization can be found in Part II.Parser Generator From a normalized syntax de�nition a parse table is gen-erated using an extension of the standard SLR(1) algorithm with characterclasses, priorities, follow restrictions, and reject productions. The parser gener-ator accepts arbitrary context-free grammars. The techniques used in the parsergenerator are discussed in x3.5.Parser A parse table is interpreted by a generic, language independentSGLR parser, which reads a text and produces a parse tree. At the heart of theparser is an extension of the GLR algorithm of Rekers (1992) that reads char-acters directly, without using a scanner. The extension of the GLR algorithmwith reject reductions is discussed in x3.8.Pretty-Printer A pretty-printer is used to translate the output tree of theprocessor to text. The pretty printer itself can also be generated from thede�nition of the output language. This is described in Van den Brand andVisser (1996) and is not further discussed here.1Here text denotes a linear representation of a program in some character code, e.g., ASCIIor UniCode.28



Introduction / 3.1
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Figure 3.1: Architecture of an SDF2 application.3.1.3 ContributionsThe scannerless generalized-LR parsing approach presented in this chapter is anew powerful parsing method that supports concise speci�cation of languages.The technical contributions (the details of which will be discussed later on) ofthe approach are:| The normalization of grammars to eliminate features enhancing the ex-pressivity of the formalism, in particular, the integration of lexical andcontext-free syntax by means of normalization into a single grammar. 29



3 / scannerless generalized-lr parsing| The use of GLR parsing for scannerless parsing to deal with unboundedlookahead.| Static disambiguation by means of priorities by interpreting priority dec-larations in the parser generator. Priorities are completely expressed inthe parse table.| The use of character classes in grammars to compact the parse table.| The use of follow restrictions to de�ne longest match disambiguation andthe interpretation of follow restrictions in the parse table.| Prefer literals disambiguation by means of reject productions. Severalexpressivity results about context-free grammars with reject productions.Implementation of parsers for such grammars in an extension of the GLRalgorithm.3.1.4 OverviewIn the next section we will argue in more detail that scannerless parsing has anumber of de�nite advantages over parsing with scanners, but that it has notbeen introduced before because of the limitations of conventional parsing tech-niques. In the rest of the chapter we present several techniques that overcomethese limitations and result in a combined approach encompassing grammarformalism and parsing techniques that does make scannerless parsing feasible.3.2 Scannerless ParsingThe term scannerless parsing was coined by Salomon and Cormack (1989, 1995)to indicate parsing without a separate lexical analysis phase using a scannerbased on a deterministic �nite automaton. The parser directly reads the char-acters of a text. This entails the integration of the de�nition of lexical andcontext-free syntax in one grammar.Consider the following SDF2 de�nition of a simple language of expressionsconsisting of identi�ers, additions and multiplications.sorts Id Explexical syntax[a-z]+ -> Id[\ \t\n] -> LAYOUTcontext-free syntaxId -> ExpExp "*" Exp -> Exp {left}Exp "+" Exp -> Exp {left}context-free prioritiesExp "*" Exp -> Exp >Exp "+" Exp -> Exp30



Scannerless Parsing / 3.2The �rst line declares the sorts (say the non-terminals) of the grammar. Thenext three lines declare the lexical syntax of the language such that identi�ersare lists of one or more lowercase letters and layout consists of spaces, tabs andnewlines. The next four lines declare the context-free syntax of the language.An expression is either an identi�er or an addition or multiplication of twoexpressions. Observe that the grammar is ambiguous and that in order todisambiguate it, priority and associativity declarations have been added. Thelast three lines declare that multiplication has higher priority than addition.The left attribute declares addition and multiplication to be left-associative.The conventional way to interpret such a grammar to parse a string is asfollows: (1) Divide the string into tokens according to the lexical syntax inall possible ways. (2) Apply lexical disambiguation rules to select the desireddivision. For instance, given the string ab , the rule `prefer longest match'would prefer the division ab  over a b  , i.e., the longest possible identi�er isselected. (3) Throw away layout tokens. (4) Parse the resulting token stringaccording to the context-free syntax. The result is a parse tree that contains asleafs the tokens yielded by lexical analysis.In scannerless parsing we have the following sequence: (1) Combine the de�-nition of lexical and context-free syntax into a single context-free grammar. Alltokens on the left-hand side of productions in the context-free syntax are ex-plicitly separated by layout. All grammar symbols are renamed, such that thesymbols occurring in the lexical syntax have the form h -LEXi and those in thecontext-free syntax have the form h -CFi. This is done to keep the two levelsseparated. For instance, the addition production is transformed into<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>The symbol hLAYOUT?-CFi represents the syntax of layout that can appear be-tween tokens. In x3.3 this will be explained in more detail. The complete inte-grated grammar corresponding to the de�nition above is presented in Figure 3.3on page 39. (2) Parse the characters of the string according to the normalizedgrammar. The result is a parse tree that contains as leafs the characters ofthe string. The tokens are recognizable as subtrees. For example, consider theparse tree in Figure 3.2. Observe that the symbols hL-LEXi and hL-CFi areabbreviations for hLAYOUT-LEXi and hLAYOUT-CFi and denote layout nodes.In a sense, nothing is new. In a conventional parser, if we would instruct thescanner to make each character into a corresponding token, the parser that readsthese tokens would in e�ect be `scannerless'. The reason that we distinguishscannerless parsing from parsing with a real scanner is that the former generatessome special problems that are avoided by using a scanner.3.2.1 AdvantagesNow that we have an understanding of what scannerless parsing is, we mightask why it is any good. We will discuss the advantages one by one.No Scanner The obvious advantage of scannerless parsing is that no imple-mentation of a scanner and scanner generator is needed and that the complicatedinterface between scanner and parser can be eliminated. 31



3 / scannerless generalized-lr parsing
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Figure 3.2: Parse tree for the string ab + \tc Integrated Uniform Grammar Formalism A language is completely de�nedby means of one grammar. All grammar rules are explicit and formally speci�ed.Lexical syntax and context-free syntax are speci�ed with the same formalism.There is no longer a distinction between regular and context-free grammars.This makes the formalism more uniform and orthogonal. All features availablefor lexical syntax are available for context-free syntax and vice versa. Thissimpli�es use and implementation of the formalism.Disambiguation by Context Because of the integration of lexical and context-free syntax, lexical analysis is guided by context-free analysis. If a token doesnot make sense at some position, it will not even be considered. For instance,in the example above, the longest match rule does not have to be used to preferab  over a b  because the latter situation|two adjacent identi�ers|is neversyntactically correct.The paradigmatic example of context-dependent lexical disambiguation is theinterplay between subrange types and oating point number constants in Pascal.Subrange types have the form k..l, where k and l are constants. If oatingpoint number constants could have the form i. and .j with i and j numbers,then i..j could be scanned either as i .. j , i.e., the range from i to j, or asi. .j , i.e., two adjacent oating point numbers. In scannerless parsing, thisambiguity is solved automatically by context. A scanner that has no accessto the context and applies the longest match rule, would always choose thesecond possibility (two adjacent numbers) and fail. Apparently for this reasonthe syntax of Pascal only allows real numbers of the form i.j, where i and j32



Scannerless Parsing / 3.2are non-empty lists of digits (Jensen and Wirth, 1975). Similar examples canbe found in many languages.Another example where the parsing context is relevant for making lexicaldecisions is the syntax of lists of statements that can be separated by semicolonsor newlines. Consider the grammarlexical syntax[\ \t\n] -> LAYOUTcontext-free syntax"begin" {Stat ";"|"\n"}* "end" -> BlockThe lexical syntax de�nes newlines (\n) to be layout. The context-free syntaxde�nes blocks as lists of zero or more statements starting with the keywordbegin and ending with the keyword end. The list is declared by the constructfA Bg�, which declares a list of As separated by Bs, i.e., a list of the formA B A : : : B A. In this case the separator is either a semicolon or a newline.This means that newlines are both layout and non-layout. If the disambiguationrule `prefer non-layout' is applied to the tokens of this language, all newlines|even those not used as separator of statements|will be wrongly characterizedas non-layout. A scannerless parser will recognize the newlines used as separatorsimply by considering the parsing context.Conservation of Lexical Structure Scanners do usually not maintain thephrase structure of the tokens they produce. For example, the grammarlexical syntax[a-z]+ -> Id"/"? {Id "/"}+ -> Pathde�nes the lexical syntax of path expressions as occur, for instance, in thenaming conventions of tree-structured �lesystems. This syntax has to be lexicalsince no layout should occur between the identi�ers and separators of a path. Ascanner would produce a string containing the characters of a path expressionwithout the structure assigned to it by the grammar, i.e., the distinction betweenidenti�ers in the path is lost. This entails that the semantic processor mustreparse such tokens to deal with their internal structure.Conservation of Layout Scanners throw away the layout between tokens ofa phrase. In this way the parser can ignore layout, which simpli�es the parsingproblem. However, there are examples of operations on programs that requirethe structure of the program, i.e., the parse tree, but also the layout in thesource. Examples are source to source translations, transformations on thesource text and program documentation tools. Although a conventional parsercould be instructed to add the layout to the parse tree via some detour, thiswould usually require a non-standard extension of the method. If the layoutwould be explicitly speci�ed in the grammar we would get an approach that isvery similar to scannerless parsing. 33



3 / scannerless generalized-lr parsingExpressive Lexical Syntax Context-free grammars provide a more expressivegrammar formalism for lexical syntax than regular grammars. This additionalexpressive power opens the way to concise de�nitions of nested comments andsyntactically correct expressions in comments. For example, consider the fol-lowing extension of the expression grammar above that de�nes C-like commentsas a list of comment words between /* and */.sorts ComWord Commentlexical syntax~[\ \t\n\|\/]+ -> ComWordcontext-free syntax"/*" ComWord* "*/" -> CommentComment -> LAYOUTA comment word is a non-empty list of characters that are not whitespace, | or/. Since the de�nition of comments is part of the context-free syntax, commentwords can be separated by layout. These comments are made into layout by thelast line of the grammar, which is an injection of comment into layout. Becauselayout can occur between any two adjacent tokens, comment can as well.According to this de�nition, comments can be nested, because comment wordsare separated by layout, which includes comments. For instance, the stringh /* height *//** w /* width */* d /* depth */*/is a syntactically correct expression over the grammar above in which part ofan expression including comments is commented out. This is a tedious job ifnested comments are not supported by the language.Moreover, the following extension of the grammar above de�nes that a com-ment word can also be an expression between two |s.context-free syntax"|" Exp "|" -> ComWordThis entails that comments can contain quoted expressions that must be syn-tactically correct. For instance, the following sentence contains the expressionx + y as part of a comment.a + b /* an expression |x + y| denotesthe addition of |x| and |y| */+ cThis is useful for typesetting comments in literate programs and for generatingcross-references.34



Scannerless Parsing / 3.23.2.2 Problems & SolutionsNow one might ask why scannerless parsing was not introduced earlier, if it hasso many advantages. The answer is that there are several problems caused bythe integration of lexical and context-free syntax as well. In this chapter wediscuss solutions to these problems that make scannerless parsing feasible.Limitations of Parsing Techniques The main problem with scannerless pars-ing are the limitations of the conventional deterministic parsing techniques.Most complete character level grammars are not LR(1), LL(1), or even LR(k)due to lookahead needed for lexical elements. When parsing with a scanner alookahead of 1 entails looking one token ahead. In scannerless parsing a looka-head of 1 entails only considering the next character. Furthermore, when layoutis skipped by the scanner this need not be considered in the lookahead. Thesolution used in the SDF2 implementation is to use the generalized-LR parsingalgorithm of Tomita (1985) and Rekers (1992) to get dynamic lookahead.Grammar Size Another problem is the size of grammars. Complete charac-ter level grammars are large because all constructs have to be speci�ed down tothe character level. Furthermore, the placement of layout between tokens shouldbe explicitly declared in productions. For maintenance and readability of gram-mars this is problematic. To support the development of complete characterlevel grammars an expressive formalism is needed that hides the details of theinterface between lexical and context-free syntax and of the placement of layout.In x3.3 we discuss the approach of grammar normalization in order to providean expressive formalism with a minimal semantic basis. In x3.4 we discuss theextension of context-free grammars with various disambiguation constructs tokeep grammars concise.Lexical Disambiguation Although many lexical ambiguities are solved auto-matically through the integration of lexical and context-free syntax, there arestill cases where disambiguation of lexical constructs needs to be expressed.Since lexical analysis is now based on context-free parsing, familiar lexical dis-ambiguation rules such as `prefer longest match' and `prefer keyword' have tobe rede�ned and their implementation reconsidered. In x3.4 we discuss two dis-ambiguation constructs for lexical disambiguation: follow restriction and rejectproductions that su�ce to express all common lexical disambiguation rules.Interpretation of Disambiguation Rules There are a number of ways to in-terpret disambiguation constructs. One possibility is to implement them as a�lter on parse forests as proposed in Chapter 4. However, for disambiguationof lexical constructs and context-free expressions with priorities this can lead toan exponential size of the parse forest before �ltering, which makes the methodtoo ine�cient. In x3.5 we discuss the techniques used in parser generation toencode disambiguation rules in the parse tables such that decisions are takenearly. In x3.8 an extension of the GLR parsing algorithm with reject reductionsis presented. 35



3 / scannerless generalized-lr parsingE�ciency The �rst problem that comes to mind when considering scanner-less parsing is e�ciency. Since scanning with a �nite automaton has a lowercomplexity than parsing with a stack, scannerless parsing, i.e., replacing the�nite automaton part by a stack machine, should be less e�cient. The fol-lowing considerations led us to attempt scannerless parsing, nonetheless: (1)LR parsing is linear, in particular for regular grammars. Since lexical syntaxis traditionally formulated by means of regular grammars, we should expectlinear behaviour for the lexical part of scannerless parsers. (2) The completecomplexity of the scanner/parser setup should be considered including lexicaldisambiguation. If lexical disambiguation rules cannot solve all ambiguities anddisambiguation has to be deferred to the parser, a kind of graph structured stackhas to be maintained to keep track of the possible segmentation of the string intokens. (Such a setup is used in the ASF+SDF Meta-Environment (Klint, 1993)that forms the background for the development of SDF2.) It seems even moree�cient to maintain a single graph structured stack, instead of two. (3) If morecomplex grammars for lexical syntax are used, we get into an area where scan-nerless parsing and parsing with scanners can no longer be properly comparedbecause such syntax is not expressible in the scanner framework. Therefore, theworst case complexity of context-free parsing should not be taken as a referencepoint for considering the complexity of scannerless parsing.Of course, these considerations should be veri�ed by means of experiments.However, experiments with scannerless parsing can only be performed aftersolutions have been found for the other problems discussed above. It seemsthat these problems are the cause for the late introduction of scannerless parsingrather than bad e�ciency of the method. In x3.9 we will discuss a few simpleexperiments that have been performed with the scannerless parsing methoddescribed in this chapter and that seem to con�rm our expectations.3.3 Grammar NormalizationWe need an expressive grammar formalism in which lexical syntax and context-free syntax are integrated and that supports concise syntax de�nitions. SDF2is such an expressive formalism. It provides regular expressions, lexical andcontext-free syntax, character classes, literals, priorities, modules, renaming,and aliases. The �rst version of the formalism was described in Visser (1995b).The full de�nition is presented in Part II. Because it is expensive to extendtools to such an expressive formalism, all features that are expressible in moreprimitive features are eliminated by means of a normalization function on gram-mars.3.3.1 Normal FormThe expressive power of the syntax de�nition formalism SDF2 can be charac-terized by the equationSDF2 = context-free grammars + character-classes + priorities+ reject productions + follow restrictions36



Grammar Normalization / 3.3That is, any SDF2 de�nition is equivalent to a context-free grammar makinguse of character classes, priorities, reject productions and follow restrictions. Allother features are expressed in terms of these features. The equivalence is suchthat a de�nition is equivalent to a de�nition of the formsorts s1 : : : sjsyntax p1 : : : pkpriorities pr1; : : : ; prlrestrictions r1 : : : rmwhere the si are sort symbols, the pi are context-free productions of the form� ! A, the pri priority declarations of the form pj R pj0 with R a priorityrelation, and the ri follow restrictions of the form � �6 � cc with � a list ofsymbols and cc a character class.A production can have a number of attributes that may include the attributereject, which makes the production a reject production. A priority relationis one of left, right, assoc, non-assoc or >. A symbol can be a characterclass or some other symbol. Only character classes are interpreted during parsergeneration. Other symbols constructed using symbol operators are simply in-terpreted as a name. For instance, the symbol A+ used to indicate the iterationof symbol A has no special meaning after normalization.Given a grammar G the following projection functions are de�ned:S(G) 7! sorts of GSyms(G) 7! symbols used in GP(G) 7! productions of GPr(G) 7! priorities of GR(G) 7! restrictions of G3.3.2 NormalizationAs an example of the normal form, consider the grammar in Figure 3.3. It com-pletely describes the lexical and context-free syntax of expressions with identi-�er, multiplication and addition|the same language described in the examplein x3.2. In fact, this grammar is derived from that grammar by application of anormalization procedure. We briey discuss the elements of this normalizationthat is formally speci�ed in Part II. Refer to Figure 3.3 for examples of thenormalization rules.Lexical and Context-free Syntax The most important aspect of the normal-ization for this chapter is the integration of lexical and context-free syntax. Theproductions of lexical and context-free syntax are merged. In order to avoidinterference of lexical and context-free syntax the symbols in productions arerenamed. The symbols in the lexical syntax|except for character classes andliterals|are renamed using the symbol constructor h -LEXi. For instance, Idbecomes hId-LEXi and [\97-\122]+ becomes <[\97-\122]+-LEX>. Similarly,the symbols in the context-free syntax are renamed using h -CFi. Furthermore,37



3 / scannerless generalized-lr parsingthe symbols on the left-hand side of context-free productions are separated byhLAYOUT?-CFi, which entails that layout can occur at that position. In thisway two disjunct sets of symbols are created. The interface between lexical andcontext-free syntax is now expressed by an injection hA-LEXi ! hA-CFi for eachsymbol A used both in the lexical and the context-free syntax.Top Symbol A syntax de�nition de�nes a number of symbols. A text oversuch a de�nition can be one produced by any of its symbols. For context-freeparsing we need a single start symbol from which all strings are generated. Forthis purpose for each sort A a productionhLAYOUT?-CFi hA-CFi hLAYOUT?-CFi ! hSTARTiis added to the grammar, de�ning the start symbol hSTARTi. The productionalso de�nes that a string can start and end with layout. Furthermore, to expressthe termination of a string the productionhSTARTi [\EOF]! hStartide�nes that a string consists of a string generated by hSTARTi followed by theend of �le character.Character Classes Character classes are expressions of the form [cr1 : : : crn]where the cri are either characters or character ranges of the form c�c0. Charac-ter classes are normalized to a unique normal form by translating the charactersto a numeric character code|the ASCII code|and by ordering and mergingthe ranges such that they are in increasing order and do not overlap. Thisnormalization is formally speci�ed and proven correct with respect to the setinterpretation of character classes in Visser (1997b).Literals Literals are abbreviations for �xed lists of characters. Literals arede�ned in terms of a production with the literal as result and singleton char-acter classes corresponding to the characters as arguments. For example, theproduction [\108] [\101] [\116] -> "let"de�nes the literal "let" as the sequence of characters l, e and t in ASCII.Regular Expressions An extensive set of regular expressions including op-tional, alternative, tupling, several kinds of iteration and permutation are ex-pressed by means of de�ning productions. For instance, consider the de�nitionof <[\97-\122]+-LEX> in Figure 3.3, which de�nes a list of one or more lower-case letters.Priorities Priorities can be declared using chains of > declarations and as-sociativities of productions can be declared using groups and attributes. Theseare all de�ned in terms of binary priority and associativity declarations.38



Grammar Normalization / 3.3sorts Id Expsyntax[\9-\10\32] -> <LAYOUT-LEX><LAYOUT-LEX> -> <LAYOUT-CF><LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> {left}-> <LAYOUT?-CF><LAYOUT-CF> -> <LAYOUT?-CF>[\42] -> "*"[\43] -> "+"[\97-\122] -> <[\97-\122]+-LEX><[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>{left}<[\97-\122]+-LEX> -> <Id-LEX><Id-LEX> -> <Id-CF><Id-CF> -> <Exp-CF><Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}<LAYOUT?-CF> <Id-CF> <LAYOUT?-CF> -> <START><LAYOUT?-CF> <Exp-CF> <LAYOUT?-CF> -> <START><START> [\EOF] -> <Start>priorities<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>left<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>,<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> left<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF>,<Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> ><Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>,<Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> left<Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>,<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> left<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>Figure 3.3: Expression grammar in normal form. The grammar contains norestrictions or reject productions.Modules An SDF2 de�nition can be divided over a number of modules. Mod-ules can import other modules. This is used to share common syntax de�nitionsin several language de�nitions. Renamings of symbols and productions can beused to adapt the de�nition in a module to some application. Furthermore,symbol aliases can be used to abbreviate long regular expressions. Modularsyntax de�nitions are completely expanded by the normalization function. 39



3 / scannerless generalized-lr parsing3.3.3 SemanticsA syntax de�nition de�nes a language, i.e., a set of strings, and the structurethat is assigned to those strings. The strings of the language are importantto its users who write down programs. The structure of those strings is im-portant for the de�nition of language processors such as compilers, interpretersand typecheckers. The productions of an SDF2 de�nition describe both thelanguage and the structure assigned to strings in the language. The semanticsof a syntax de�nition is a set of parse trees from which a set of strings can bederived. The mapping from trees to strings is achieved by taking the yield ofa tree. The reverse mapping from strings to trees is called parsing. At thispoint, we formally de�ne the semantics of context-free grammars without con-sidering disambiguation rules such as priorities, reject productions and followrestrictions.A context-free grammar G generates a family of sets of parse trees T (G) =(T (G)(X) j X 2 Syms(G)), which contains the minimal sets T (G)(X) such thatc 2 ccc 2 T (G)(cc) (Char)A1 : : : An ! A 2 P(G); t1 2 T (G)(A1); : : : ; tn 2 T (G)(An)[t1 : : : tn ! A] 2 T (G)(A) (Prod)In rule (Char) c is a character and cc a character class. We will write t� for alist t1 : : : tn of trees where � is the list of symbols X1 : : : Xn and ti 2 T (G)(Xi)for 1 � i � n. Correspondingly we will denote the set of all lists of trees of type� as T (G)(�). Using this notation [t1 : : : tn ! A] can be written as [t� ! A]and the concatenation of two lists of trees t� and t� is written as t�t� and yieldsa list of trees of type ��.The yield of a tree is the concatenation of its leafs. The language de�ned bya grammar G is the family L(G) = (L(G)(X) j X 2 Syms(G)) of sets of stringsthat are yields of trees over the grammar, i.e., L(G)(X) = yield(T (G)(X)). Aparser is a function � that maps a string of characters to a set of parse trees. Aparser � accepts a string w if j�(w)j > 0. A parser for a context-free grammarG that accepts exactly the sentences in L(G) is de�ned by�(G)(w) = ft 2 T (G)(X) j X 2 Syms(G); yield(t) = wgA parser � is deterministic if j�(w)j � 1 for all strings w. A grammar isambiguous if there are strings with more than one parse tree, i.e, j�(G)(w)j > 1.3.4 DisambiguationDisambiguation methods are used to select the intendend tree from a set of pos-sible parse trees for an ambiguous string. SDF2 provides three disambiguationmethods. Priority and associativity declarations are used to disambiguate con-cise expression grammars. Follow restrictions and reject productions are usedto express lexical disambiguation. In this section we discuss these methods.40



Disambiguation / 3.43.4.1 Disambiguation by PrioritiesBy using priority and associativity declarations, fewer grammar symbols have tobe introduced and a more compact abstract syntax can be achieved. Considerthe following grammar of expressions in a functional programming languagewith binary function application and let binding.sorts Var Termlexical syntax[a-z]+ -> Var[\ \t\n] -> LAYOUTcontext-free syntaxVar -> TermTerm Term -> Term {left}"let" Var "=" Term "in" Term -> TermTerm "=" Term -> Term {non-assoc}"(" Term ")" -> Term {bracket}context-free prioritiesTerm Term -> Term >Term "=" Term -> Term >"let" Var "=" Term "in" Term -> TermAn example term over this grammar islet sum = foldr plus zero in sum lstThe grammar is disambiguated by means of priorities. The binary applicationoperator is declared as left-associative. This entails that x y z should be readas (x y) z and not as x (y z). This is illustrated in Figure 3.4 that showsthe right- and left-associative parse trees for three adjacent terms. The prioritydeclaration de�nes applications to have higher priority than equalities. Considerthe trees in Figure 3.5. According to the priority declaration, the �rst tree hasa priority conict and therefore only the second tree is a correct parse tree. Thefollowing de�nition formally de�nes the notion of priority conicts.De�nition 3.4.1 Given some grammar G with priority declarations Pr(G), theset conicts(G) of priority conicts over grammar G is the smallest set of parsetree patterns of the form [�[� ! B] ! A] such that:�B ! A > � ! B 2 Pr(G)[�[� ! B] ! A] 2 conicts(G) (CF1) 6= �; � ! B (right [ non-assoc) B ! A 2 Pr(G)[[� ! B] ! A] 2 conicts(G) (CF2)� 6= �; � ! B (left [ assoc [ non-assoc) �B ! A 2 Pr(G)[�[� ! B]! A] 2 conicts(G) (CF3)A parse tree over a grammar G has a priority conict if one of its nodes matchesa pattern [�[� ! B] ! A] 2 conicts(G). 241



3 / scannerless generalized-lr parsing
<Term-CF>

<Term-CF> <L?-CF> <Term-CF>

<Term-CF> <L?-CF> <Term-CF>

<Term-CF> <L?-CF>

<Term-CF>

<Term-CF>

<Term-CF>

<L?-CF> <Term-CF>Figure 3.4: Left- and right-associative parse trees for binary term application.
<Term-CF>

<Term-CF> <L?-CF> <Term-CF>

<Term-CF> <L?-CF> "=" <L?-CF> <Term-CF>

<Term-CF> <L?-CF> "=" <L?-CF>

<Term-CF>

<Term-CF>

<Term-CF>

<L?-CF> <Term-CF>Figure 3.5: Two parse trees for application and equality.Using the notion of priority conicts we can de�ne a �lter on sets of parse treesthat selects the trees without a conict. For example, according to rule (CF3)and because of the declaration of application as a left-associative operator, thepattern [hT-CFi hL?-CFi [hT-CFi hL?-CFi hT-CFi ! hT-CFi]! hT-CFi]describes a tree with a conict. (Term and LAYOUT are abbreviated to T and L,respectively.) Therefore, the second tree in Figure 3.4 has a conict and the�rst one is selected by the disambiguation method. According to rule (CF1)and because application has higher priority than equality, the pattern[[hT-CFi hL?-CFi "=" hL?-CFi hT-CFi ! hT-CFi] hL?-CFi hT-CFi ! hT-CFi]is a member of the conicts generated by the functional language grammar.This means that the �rst tree in Figure 3.5 has a priority conict. The secondtree has no conict.3.4.2 Lexical DisambiguationIf we consider the example of functional expressions again we see that it containstwo occurrences of lexical ambiguities.Longest Match In the �rst place there is a longest match problem caused bythe syntax-less binary application operator. Two adjacent letters could be theconcatenation of two letters forming a variable, or it could be the applicationof two single letter variables. Figure 3.6 shows two parse trees for the stringfa. In the �rst tree the concatenation of letter lists is used to make them intoa single variable. In the second tree each letter is interpreted as a variable onits own. We want to solve this ambiguity by means of the longest match rule42



Disambiguation / 3.4that prefers the longest possible lexical token. In this case the string fa as asingle variable. We de�ne the longest match notion formally by comparing thelengths of tokens. For this de�nition we �rst need the notion of the token streamassociated to a parse tree.De�nition 3.4.2 (Token Stream) The token stream associated with a parsetree is the list of subtrees that have as root either an injection hA-LEXi ! hA-CFior a literal de�ning production. The length jtj of a token t is the number ofcharacters in its yield. 2According to this de�nition the token streams for the trees in Figure 3.6 arethe single token[[[[f! <[a-z]+-LEX>][a! <[a-z]+-LEX>]! <[a-z]+-LEX>]! <Var-LEX>]! <Var-CF>]and the tokens[[[f! <[a-z]+-LEX>]! <Var-LEX>]! <Var-LEX>][[[a! <[a-z]+-LEX>]! <Var-LEX>]! <Var-LEX>]The idea of longest match disambiguation is to compare two token streams fromleft to right. While the tokens have the same length the streams are similar.The �rst token that di�ers in length solves the ambiguity by taking the treeassociated with the longer token. In the example above, the �rst token streamis larger because its �rst token has length 2 while the �rst token of the secondstream has length 1.
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3 / scannerless generalized-lr parsingFormally we have the following de�nition of longest match disambiguation:De�nition 3.4.3 (Longest Match) Given the token streams t1 : : : tn associ-ated with the tree t and s1 : : : sm associated with tree s, tree t is larger in thelongest match ordering >lm than s (t>lm s), if there is some 1 � i � min(n;m)such that jtj j = jsj j for 1 � j < i and jtij > jsij. 2This de�nition can be used as a method to �lter parse forests by selectingthe largest trees according to the longest match ordering. However, becausea longest match ambiguity causes an exponential explosion of the parse forestthis is not feasible. We need a method that can be applied during parsing,if possible as a �lter on parse tables. A naive solution for the longest matchproblem in the example above is to require non-empty layout as a separatorbetween the two terms of an application. In the example this would indeed solvethe problem because the second tree would be forbidden. However, this solutionis immediately refuted by considering the expression f(a), where brackets areused around the argument.A method that works in all cases we have encountered so far is that of followrestrictions. A follow restriction of the form A1 : : : An �6 � cc declares that thesymbols Ai should not be followed by any of the characters in the characterclass cc. In the example above the restrictionlexical restrictionsVar -/- [a-z]forbids a variable to be followed by a letter. This entails that the second tree inFigure 3.6 violates the follow restrictions and the desired �rst tree is selected.Prefer Literals The second problem in the functional expression grammar is theoverlap between the literals "let" and "in" and variables. This is particularlyproblematic in combination with the = operator on terms. A let binding letx = t1 in t2 can be interpreted also as an equality (let x) = (t1 in t2),where let and in are now read as variables. We clearly want to declare let andin as reserved words of the language that should not be used as variables. Thislexical disambiguation rule is called `prefer literals' and can be de�ned formallyas follows.De�nition 3.4.4 (Prefer Literals) A tree violates the prefer literals rule ifit contains a subtree with function hA-LEXi ! hA-CFi and the yield of that treeis also used as literal in the grammar. 2This rule can be expressed by means of reject productions. A reject produc-tion is a production � ! A attributed with the attribute reject. It declaresthat a string is not of type A if it can also be derived from �. For example todisambiguate the grammar above we add the following productions.lexical syntax"let" -> Var {reject}"in" -> Var {reject}44



Parser Generation / 3.5This creates an ambiguity: let can be a variable in two ways, via the lexicalde�nition or via the production above. Because this is a reject production bothderivations are forbidden, i.e., let can only occur in the context of a let binding.We also need the restrictionslexical restrictions"let" "in" -/- [a-z]to prevent letter to be interpreted as the literal let and the variable ter. Wewill further discuss some properties of reject productions in x3.7.Automatic Lexical Disambiguation We have de�ned two extensions of context-free grammars that enable us to express lexical disambiguation rules on gram-mars for integrated lexical and context-free syntax. However, it is desirable toderive the rules for lexical disambiguation automatically from the grammar. Inx3.6 we will discuss this issue, after we have discussed parser generation.3.5 Parser GenerationWe have discussed a grammar formalism with disambiguation methods for con-cise de�nition of lexical and context-free syntax of languages. Now we turn ourattention to deriving parsers from such syntax de�nitions. In this section wepresent the rules for the generation of parse tables for a shift-reduce parser. Therules constitute a modi�cation of the well known SLR(1) algorithm. We �rstdiscuss shift-reduce parsing.3.5.1 Shift-Reduce ParsingA shift-reduce parser is a transition system that manipulates its state consistingof a stack and an input stream by repeatedly shifting a symbol from the input tothe stack or reducing a number of elements on top of the stack to a single elementuntil it enters an accepting state. The transitions between parse con�gurationsare determined by the functions `actions' and `goto' as de�ned by the followingtransition rules: actions(sm; ai) 3 shift(sm+1)(s0t1s1 : : : tmsm � ai : : : an)) (s0t1s1 : : : tmsmaism+1 � ai+1 : : : an) (Shi)actions(sm+k; ai) 3 reduce(p; k);s = goto(sm; p); t = tree(p; [tm+1; : : : ; tm+k])(s0t1 : : : tmsmtm+1sm+1 : : : tm+ksm+k � ai : : : an)) (s0t1 : : : tmsmts � ai : : : an) (Red)actions(s1; \EOF) 3 accept(s0t1s1 � \EOF)) accept(t) (Acc)Here a con�guration (s0t1s1 : : : tmsm � ai : : : an) consists of a stack on the leftside of the � and a list of input characters on the right side of the �. The stack is45



3 / scannerless generalized-lr parsing�lled alternatingly with states s and trees t. Parsing starts in the con�gurationC0 = (s0 �a1 : : : an), where s0 is the initial state of the parser. Parsing succeedsif there is some sequence of steps C0 ) C1 ) : : :) accept(t) that ends in theaccepting con�guration accept(t).There are various ways to de�ne the actions and goto functions that drive ashift-reduce parser. The SLR(1) algorithm of DeRemer (1971) and Andersonet al. (1973) is a simpli�cation of the LR(k) parsing algorithm of Knuth (1965).It works by �rst constructing an LR(0) parse table. This involves no lookaheadsets in the parse items. The lookahead of reductions is constrained to the followset of the nonterminal de�ned by the production being reduced.In the rest of this section we describe a modi�cation of the SLR(1) algorithmthat incorporates priorities and follow restrictions. This modi�cation is based onthe derivation in Chapter 5, where starting with a schema for Earley's parsingalgorithm, a parsing schema is derived such that the parser does not build treeswith priority conicts. Other changes are the use of character classes, the useof productions instead of symbols in follow and goto and the interpretation offollow restrictions to restrict the lookahead set of reductions.3.5.2 FirstThe �rst set for a symbol contains those symbols with which a phrase for thesymbol can start. Given some grammar G, de�ne for each list of symbols � andeach character class cc the �rst characters in � followed by cc is the smallestcharacter class �rst(�; cc) such that:�rst(�; cc) = cc (Fi1)�rst(cc0 �; cc) = cc0 (Fi2)�! A 2 P(G)�rst(A�; cc) � �rst(��; cc) (Fi3)The de�nition of the �rst set can be extended to the set of symbols that startsa sentence derived from a list of symbols.�! A 2 P(G)�rsts(A�;�) � fAg [ �rst(��;�) (Fi4)3.5.3 FollowIn the conventional SLR(1) algorithm the follow set is computed for each non-terminal of the grammar. It maps a nonterminal to the set of terminals thatcan follow that nonterminal in a sentence, i.e.,�A� !� hStartifollow(A) � �rst(�; ;)This can be computed as the closure of�A ! B 2 P(G)follow(A) � �rst(; follow(B)) (Fo1)46



Parser Generation / 3.5that adds the characters in the �rst set of  to the follow set of A if  followsA in some production. The follow of B is added in case  can also produce theempty string.This notion can be re�ned to the follow-set of productions. The rule�A ! B 2 P(G)follow(�! A) � �rst(; follow(�A ! B)) (Fo2)de�nes the follow-set of production � ! A as those characters that can followA in some context. In case of plain context-free grammars, rule (Fo2) has thesame e�ect as rule (Fo1). But if we consider priorities, the rule is extended to�A ! B 2 P(G); [�[�! A] ! B] 62 conicts(G)follow(�! A) � �rst(; follow(�A ! B)) (Fo3)Here the follow-set of a production is restricted to those contexts where it canactually be used without causing a priority conict. For instance, in the ex-pression grammar of x3.2, the follow-set of the addition production does notcontain the character � because addition can not occur as a direct descendantof multiplication.Finally, if the grammar also de�nes follow restriction rules A �6 � cc, thefollow-set of a production for A can be further restricted as�A ! B 2 P(G); [�[�! A] ! B] 62 conicts(G); A �6 � cc 2 R(G)follow(�! A) � �rst(; follow(�A ! B)) n cc (Fo4)The production can be followed by the di�erence of the �rst set of the rightcontext and the character class cc.To see the e�ect of the last rule consider the follow-set of the production[a-z]+ -> Var in the functional expression grammar of the previous section.Because of the application production and the injection of variables into terms,the follow-set of [a-z]+ -> Var is [\EOF\t\n\ \(\)\=a-z]. The lexical re-striction Var -/- [a-z] removes the character class [a-z] from this follow-set,resulting in [\EOF\t\n\ \(\)\=]. This entails that a variable cannot directlybe followed by a letter.3.5.4 Goto TableThe states of an LR parser are formed by item-sets. An item is an object of theform [� �� ! A], i.e., a context-free production with a � somewhere in betweenthe symbols on the left-hand side. Such an item indicates that a sentential formof type � has already been recognized.The initial state of the parser for grammar G is the item-set init(G) de�nedas init(G) = closure([�hSTARTi [\EOF]! hStarti])This state expresses that a sentence can be recognized by recognizing a stringof sort hSTARTi followed by the special end of �le character that indicates theend of strings. 47



3 / scannerless generalized-lr parsingThe closure of a set of items adds all initial items to an item set for whichthe result symbol is predicted by one of the items in the set.I � closure(I) (Cl0)[� �B� ! A] 2 closure(I);  ! B 2 P(G)[� ! B] 2 closure(I) (Cl1)In the presence of priorities the closure is restricted to those items that do notcause a priority conict.[� �B� ! A] 2 closure(I);  ! B 2 P(G);[�[ ! B]� ! A] 62 conicts(G)[� ! B] 2 closure(I) (Cl2)For example, the item [�E+E ! E] is not added to the closure as a result of theitem [E+ �E ! E] if this production is left-associative, because [E+[E+E !E]! E] is a conict patternThe parsing of a string starts with the parser in the initial state. Uponrecognition of a symbol, either by reading a character or by completing a pro-duction, the parser can enter other states as prescribed by the transitions of thegoto graph. The goto function maps an item-set to another item-set, given thesymbol that has been recognized. The function `goto' is de�ned bygoto(X; I) = closure(shift(X; I))i.e., create a new item-set by shifting the � over the symbol X and produce theclosure of the resulting item-set. In normal LR(0) parsing a shift with a symbolB creates an item-set containing all items of the previous set that have the �before a B symbol. [� �B� ! A] 2 I[�B � � ! A] 2 shift(B; I) (Sh1)We re�ne the de�nition of shift to shifting with characters and shifting withproductions. Shifting an item-set with a character or character-class is de�nedby the rule [� � cc0 � ! A] 2 I; cc � cc0[� cc0 � � ! A] 2 shift(cc; I) (Sh2)The character-class cc induces a shift of each item that predicts a character-classcc0 that is a superset of cc.Shifting with nonterminals is re�ned to shifting with complete productions.A shift is only successful if the production do not cause a priority conict as adirect descendant at the position of the predicted symbol.[� �B� ! A] 2 I; [�[ ! B]� ! A] 62 conicts(G)[�B � � ! A] 2 shift( ! B; I) (Sh3)48



Parser Generation / 3.5For example, the production E + E ! E cannot be used to shift the item[E+�E ! E] if this production is left-associative, because [E+[E+E ! E]!E] is a conict. This restriction of the closure and goto functions guaranteesthat we can never enter a state where we have built a parse tree with a priorityconict.3.5.5 Action TableThe action table declares the actions to be taken in each state. Given an item-set, the function `actions' maps a character to the set of actions that the parsercan take. If the set of actions is empty the parser has reached an erroneousstate. If the set contains more than one action there is more than one way toproceed. [� � cc � ! A] 2 I; c 2 ccactions(I; c) 3 shift(goto([c]; I)) (Shi)[�� ! A] 2 I; c 2 follow(�! A)actions(I; c) 3 reduce(�! A; j�j) (Red)[hSTARTi � [\EOF]! A] 2 Iactions(I; \EOF) 3 accept (Acc)Note that shift(I) denotes the shift action to state I, whereas shift(X; I) isthe application of the shift function de�ned above.The following proposition states that the actions and goto functions de�nedabove constitute a correct shift-reduce parser.Proposition 3.5.1 (Correctness) Given the actions and goto functions for agrammar G, we have that (init(G) �w) )� accept(t) i� t 2 �(G)(w) and t con-tains no priority conicts according to Pr(G) and violates no follow restrictionsin R(G).3.5.6 RemarksThe transition rules for shift-reduce parsing are non-deterministic. If more thanone action is possible in some con�guration more than one transition is possible.If the actions function is deterministic, at most one transition path is possiblefor a string. Traditional parsing techniques only accept grammars that have adeterministic action function. In x3.8 we will discuss an e�cient implementationfor non-deterministic actions functions.The rules for parser generation above ignore reject productions, i.e., they aretreated just like other productions. In x3.7 we will discuss how reject produc-tions can be interpreted by means of a �lter on parse forests. In x3.8 we willdiscuss how reject productions can be interpreted during parsing by means ofan adaptation of the GLR algorithm. For this purpose, an item-set I is markedas rejectable if it can be reached using a reject production, i.e., I is rejectable, ifthere is an I 0 such that goto(�! A; I 0) = I and �! A is a reject production.49



3 / scannerless generalized-lr parsing3.6 Automatic Lexical DisambiguationIn x3.4 we discussed the speci�cation of lexical disambiguation by means offollow restrictions and reject productions. Although this is an e�ective wayto express lexical disambiguation, it is rather tedious to write down the rules.Therefore, it would be desirable to derive lexical disambiguation rules automat-ically from the other grammar rules such that the grammar is disambiguatedaccording to the longest match and prefer literals criteria. Here we discuss somepossibilities. The perfect rules for longest match disambiguation have not beenfound yet. It is a question whether this is possible at all, since it is undecidablewhether a context-free grammar is ambiguous.3.6.1 Prefer LiteralsThe prefer literals disambiguation rule can be expressed by generating rejectproductions according to the following rule:"c1 : : : cn" 2 L(hA-LEXi)"c1 : : : cn"! hA-LEXi frejectg 2 P(G)i.e., if the literal is a lexical phrase of sort hA-LEXi|there is an overlap|thereject rule is added to the grammar. This implements the reserved keywordsrule. The only (implementation) problem is that a parser is needed to recog-nize the literals as lexicals. This can be solved by �rst generating a parser forthe grammar without reject rules and using that parser to determine overlapbetween literals in the grammar and lexical categories. Reject rules can then beadded to the grammar accordingly and a new parser can be generated for theextended grammar.State Explosion A problem with reject productions to exclude keywords aslexicals is that it can add many items to item-sets. For instance, if a languagecontains 200 keywords that match with the identi�ers of the language, each item-set containing an item [� � hId-LEXi� ! A] would be expanded with 200 items[�"c1 : : : cn" ! hId-LEXi frejectg] and 200 items [�[c1] : : : [cn] ! "c1 : : : cn"]along with many extra transitions. To prevent this expansion, we de�ne therejection of literals in an indirect way, as follows:"c1 : : : cn" 2 L(hA-LEXi)() hA-LITi ! hA-LEXi frejectg 2 P(G)"c1 : : : cn"! hA-LITi 2 P(G)where the symbol () denotes the empty phrase, i.e., there is a production ! ().The sort hA-LITi is used to collect all literals to be rejected from hA-LEXi. Theproduction () hA-LITi ! hA-CFi frejectg de�nes the rejection for all literalsat once. The e�ect of the empty symbol () in the second production is that onlythe item [�() hA-LITi ! hA-LEXi] is added when hA-LEXi is predicted. Thiswill cause a reduction with the production ! () to an item-set where hA-LITiis predicted. This item-set is only computed once and is reused for all other50



Automatic Lexical Disambiguation / 3.6item-sets that predict hA-LEXi. It is the initial state of a �nite automaton forthe matching of literals.As an example, consider how the prefer literals rule for our functional languageexample is expressed using this modi�ed rule:syntax() <Var-LIT> -> <Var-LEX> {reject}"let" -> <Var-LIT>"in" -> <Var-LIT>Local Exclusion An alternative for the expression of the prefer literals ruleis the rulef[�hA-LEXi ! hA-CFi]; [�[c1] : : : [cn]! "c1 : : : cn"]g � closure(I)[�"c1 : : : cn"! hA-CFi frejectg] 2 closure(I)that locally forbids predicted literals as lexicals by extending the parser gen-erator. This does not implement the reserved keywords rule in the sense offorbidding the use of a keyword as a lexical in all positions. Only when a lexicaland a literal can appear in the same place, the literal is preferred. Therefore, itmight still lead to ambiguities.3.6.2 Longest MatchIt is less straightforward to �nd a general rule to express `longest match' usingfollow restrictions. An attempt is the rulehB-LEXi 2 follows(hA-LEXi ! hA-CFi)hA-LEXi �6 � �rst(hB-LEXi) \ last(hA-LEXi) 2 R(G) (FR)This restricts the follow set of hA-LEXi by excluding the elements of the �rstset of hB-LEXi that can also be used at the end of hA-LEXi for those hB-LEXisthat can follow the injection hA-LEXi ! hA-CFi. Here follows is the extensionof the follow function to produce all symbols that can follow a production.This rule is adequate in many cases. Consider for instance the functionalexpression grammar. The follow restriction for Var in x3.4.2 is derived exactlyusing this rule. However, the rule is not general enough. One counter example isthe following grammar of expressions with single character variables and implicitmultiplication operator. This describes mathematical expressions such as xythat denotes the multiplication of x and y.lexical syntax[a-z] -> Var[\ \t\n] -> LAYOUTcontext-free syntaxVar -> ExpExp Exp -> Exp {left} 51



3 / scannerless generalized-lr parsingRule (FR) would forbid xy as an expression forcing the use of whitespace, i.e.,x y. Although this example shows that rule (FR) is unsound if considered asan analytic rule, one could also consider it as a normative rule forcing a clearerstyle of language de�nition.Rule (FR) generates follow restrictions for lexicals. We also need restrictionsfor literals overlapping with lexicals. For instance, the restrictionslexical restrictions"let" "in" -/- [a-z]forbids the interpretation of letter as the literal let and the variable ter. Thefollowing rule adds restrictions to prevent this overlap.hA-LEXi 2 follow("c1 : : : cn");c 2 �rst(hA-LEXi); "c1 : : : cnc" 2 L(hB-LEXi)"c1 : : : cn" �6 � [c] 2 R(G)If the literal L = "c1 : : : cn" followed by some character c from the �rst set ofa lexical hA-LEXi that is a member of the follow set of L can form a lexicalhB-LEXi, there is a longer match than the literal L. Therefore, c is restrictedfrom the follow set of the literal.This rule is stronger than the longest match �lter we formulated before. It canforbid sentences that have a single unambiguous interpretation. For instance,consider the string let x = l int. Here int is forced to be read as a variableand not as the juxtaposition of the literal in and the variable t.It is clear that these rules are not the �nal word about fully automatic lexicaldisambiguation. Further research is needed to decide what is su�cient.3.7 Reject ProductionsIn x3.4 we introduced reject productions to express `prefer literals' lexical dis-ambiguation. The parser generator discussed in x3.5 treats reject productionsas normal productions. This will cause ambiguous parses for those cases wherea normal production and a reject production overlap. In this section we �rstde�ne the semantics of context-free grammars with reject productions, then weinvestigate several properties of such grammars including an interpretation ofrejects to solve such ambiguities. [The author thanks Jan van Eijck and AnniusGroenink for the email discussion that led to the results in this section.]3.7.1 SemanticsThe semantics of reject productions is obtained by re�ning the inductive de�ni-tion of parse trees from x3.4. The inductive rule (Prod) is restricted to excludethe construction of parse trees that have a yield that could be obtained via areject production.A context-free grammar G with reject productions generates a family of setsof parse trees Tr(G) = (Tr(G)(X) j X 2 Syms(G)), which contains the minimal52



Reject Productions / 3.7sets Tr(G)(X) such that c 2 ccc 2 Tr(G)(cc) (CharR)A1 : : : An ! A 2 P(G); t1 2 Tr(G)(A1); : : : ; tn 2 Tr(G)(An);:9� ! A frejectg 2 P(G); t� 2 Tr(G)(�) : yield(t�) = yield(t1 : : : tn)[t1 : : : tn ! A] 2 Tr(G)(A) (ProdR)The second condition of (ProdR) excludes from Tr(G)(A) those trees for whichan A tree with the same yield could be built using a reject production at itsroot. This second condition is the only di�erence with the de�nition of T (G),i.e., we have Tr(G) � T (G). Note that only trees in Tr(G)(�) are excluded.That is, if there are nested reject productions such that some tree in T (G)(�)is rejected and thus not part of Tr(G)(�), then it is not used to exclude treesusing � ! A frejectg.Unfortunately, this de�nition is inconsistent for grammars with a cycle con-taining a reject production. For instance, consider the grammarsyntax[a] -> AA -> BB -> A {reject}and consider whether the string a is a member of the language of this grammar:if [a ! A] 2 Tr(A), then [[a ! A] ! B] 2 Tr(B) and hence [a ! A] 62 Tr(A).Conversely, if [a ! A] 62 Tr(A), then [[a ! A] ! B] 62 Tr(B) and hence[a ! A] 2 Tr(A). For this reason, we restrict the class of grammars that wewant to consider to grammars that do not contain a cycle (disregarding therejects) for which one of the transitions is via a reject production.3.7.2 Expressive PowerIn the rest of this section we explore some of the properties of reject productions.anbncn First of all context-free grammars with reject productions can beused to describe some non-context-free languages. Consider for example, thelanguage anbncn with n � 0, which is a standard example of a non-context-freelanguage. The following grammar, due to Van Eijck (1997), de�nes this languageusing reject productions. The �rst four productions de�ne the language a�b�c�.The next four productions de�ne the sorts D and E denoting, respectively, anbnand bncn. The last four productions exclude from sort S all strings for whichone of the pairs xnym have unequal numbers of xs and ys.A* B* C* -> S -> D D B+ C* -> S {reject}"a" -> A A D B -> D A+ D C* -> S {reject}"b" -> B -> E A* B+ E -> S {reject}"c" -> C B E C -> E A* E C+ -> S {reject} 53



3 / scannerless generalized-lr parsingDi�erence Given a context-free grammar de�ning sorts A and B we can de�nethe di�erence of the languages of these sorts by adding the following productions.A -> AminBB -> AminB {reject}The �rst adds all A trees to AminB, the second excludes from this all A trees thatmatch with a B tree.Intersection Extending this result, we can express the intersection betweensorts A and B by adding two new sorts AminB and AandB and by adding thefollowing productions:A -> AminB A -> AandBB -> AminB {reject} AminB -> AandB {reject}This de�nes AminB as the di�erence A�B, and AandB as the di�erence A�(A�B),i.e., the intersection of A and B.We can generalize the results above. Given two context-free languages, wecan express the di�erence and intersection of those languages using context-freegrammars with reject productions. Take the union of the context-free grammarsfor the two languages, after renaming symbols to prevent interference. Then addproductions for the sorts to be intersected as explained above.Weak Complement If we are only interested in the strings that can be gen-erated from a grammar (and not in their structure), the complement of a thelanguage generated by sort A is de�ned by extending a grammar with the fol-lowing rules:~[]* -> NotAA -> NotA {reject}The �rst production de�nes the complement of A as a string of arbitrary char-acters. The complement ~[] of the empty character class is the character classwith all characters. The second production excludes from this language allstrings in the language of A. Using this complement we can of course also ex-press the weak intersection of two sorts.Decidable We have seen that context-free grammars with reject productionsare very expressive. It is now appropriate to ask whether it is even decidablewhether a string is in the language of such a grammar. The following theoremstates that this is indeed the case. The proof uses the notion of a parse forestthat will be discussed in the next section. For the proof of the theorem we needthe following proposition about generalized-LR parsers.Proposition 3.7.1 Let G be a context-free grammar. If t1; t2 2 T (G)(A) andyield(t1) = yield(t2) = w, then a GLR parse of w will result in an ambiguitynode with t1 and t2 as possibilities.Theorem 3.7.2 The parsing problem for context-free grammars with reject pro-ductions (without rejects in cycles) is decidable.54
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Figure 3.7: Ambiguity node caused by overlap between syntax for <Var-LEX>and reject production "let" -> <Var-LEX>Proof. Given a context-free grammar G with reject productions (withoutrejects in cycles), construct a generalized-LR parser for G ignoring the rejectannotations. The result is a parser for a possibly ambiguous context-free gram-mar. Now, given a string, parse it with this parser. If parsing fails, the stringis also not in the language of the grammar with reject productions. Otherwise,the result of parsing is a parse forest. Since cycles do not contain rejects, thesecan be removed from the forest.Now, if a tree t = [t1 : : : tn ! A] should be rejected according to the secondcondition of rule (ProdR), there is a reject production � ! A and trees t� suchthat yield(t�) = yield(t1 : : : tn). But then, yield([t� ! A]) = yield([t1 : : : tn !A]) and hence, according to the proposition above, the parse forest contains anambiguity node on top of t also containing [t� ! A] as possibility.Reject productions are now interpreted by traversing the forest, in a bottom-up manner, marking tree nodes according to the following rules: (1) Leafs arenot marked. (2) A reduction node is marked if any of its direct descendants ismarked. (3) An ambiguity node is marked if either all its direct descendants aremarked, or if it contains an unmarked tree with as root label a reject production.Since the parse forest is �nite, this procedure terminates.If the root of the parse forest is marked after this procedure, the string isnot accepted by the grammar, otherwise it is accepted and the forest withoutmarked nodes represents all parse trees for the string. 2The tree in Figure 3.7 illustrates the proof. The overlap between the literal"let" and the syntax for variables causes an ambiguity. The ambiguity nodeis marked because "let" -> <Var-LEX> is a reject production. Therefore, theinterpretation of let as a variable is dismissed. 55



3 / scannerless generalized-lr parsingThis shows that we can construct a complete implementation of parsers forgrammars with reject productions. In the next section we will discuss how rejectproductions can be interpreted during parsing to inuence parse decisions toprevent trees with rejected subtrees from being built at all.Expressive Power From the above we can conclude that context-free gram-mars with reject productions are stronger than pure context-free grammars, buthave a decidable parsing problem. This gives a lower bound and upper boundfor the expressive power of the formalism, but it is an open question what classof languages is described by context-free grammars with reject productions.Regular Rejects We introduced reject productions in order to express theprefer literals rule. This means that only a regular language is excluded from acontext-free one. This gives us the guarantee that the resulting language is stillcontext-free. We could exploit this property and restrict the formalism to suchregular reject productions and implement these by means of a grammar trans-formation. However, such a grammar transformation would probably yield largegrammars. Furthermore, our implementation gives a general way to express theprefer literals rule and it allows the expression of other interesting grammarsthat have not been in the reach of declarative speci�cation. This feature cangive rise to as yet unforeseen applications.3.8 Generalized-LR ParsingIn x3.5 we have de�ned the generation of shift-reduce parsers from context-free grammars with priority declarations and follow restrictions. If the actionsfunction derived from a grammar is deterministic then the shift-reduce parseris also deterministic and can be implemented in a standard way.However, since we do not restrict the class of grammars, it is not guaranteedthat the actions function is deterministic. This can have two causes: (1) Thelookahead needed for the grammar is more than provided by the parser gener-ator. (2) The grammar is ambiguous. In the case of scannerless parsing we willfrequently see grammars for which unbounded lookahead is needed. This entailsthat no variant of the LR parser generation algorithms will produce a determin-istic actions function. Therefore, we need a non-deterministic implementationof the shift-reduce parsing algorithm. When a con�guration is reached wheremore than one action is possible, all possibilities should be tried. In case ofunbounded lookahead only one of the possible transitions leads to an acceptingcon�guration. In case of an ambiguous string, multiple accepting con�gurationswill be reached giving all possible parse trees for the string.The advantage of such a non-deterministic approach is, �rst of all, the un-bounded lookahead that it provides. Furthermore, a parser producing all parsetrees for an ambiguous string can be used as a front-end for a disambiguation�lter that selects the correct tree according to some disambiguation method.Finally, it is undecidable whether a grammar is ambiguous or has lookaheadproblems. Having a parser that yields all possible parses can help in detect-56



Generalized-LR Parsing / 3.8ing the ambiguities and resolve them in a much easier way than by inspectingconicts in a parse table.A naive way to implement such a non-deterministic parsing algorithm is tocopy the entire con�guration at each point where two or more actions are possi-ble and to continue parsing with each those con�gurations. This will not be verye�cient because of the memory requirements and because it will not reuse parsesfor substrings that are the same in two forked o� con�gurations. Generalized-LRparsing is an e�cient implementation of non-deterministic shift-reduce parsing.A GLR parser deals with conicts in the parse table by splitting the parserinto as many parsers as there are conicts. If the conict was due to a lack oflookahead, some of the parsers will not succeed in parsing the sentence and willdie. If several parsers succeed in parsing, the grammar was ambiguous. In thatcase parse trees for all possible parses are built.Generalized-LR parsing was developed for natural language processing byTomita (1985). It is a specialization of the more general framework of Lang(1974) (later also described in Billot and Lang (1989)) for creating generalizedparsers. The algorithm was improved by Rekers (1992) and applied to parsing ofprogramming languages. The feasibility of GLR parsing for parsing of program-ming languages has been shown by the experience with GLR in the ASF+SDFMeta-Environment (Klint, 1993). More experience with GLR parsing of pro-gramming languages using an adaptation of Reker's algorithm is reported byWagner and Graham (1997).Besides the non-determinism in the parse table, we also need to interpret thereject productions in the grammar. In the previous section we showed how rejectproductions can be interpreted as a disambiguation �lter after parsing. But wewould rather interpret them earlier. In this section we explain GLR parsing andpresent an adaptation of the algorithm to interpret reject productions duringparsing.3.8.1 Parse ForestA generalized parser deals with ambiguous grammars by producing all possibleparse trees for an ambiguous string. In GLR parsing the possible parse treesare represented by means of a parse forest. This is a compact representation ofa set of parse trees. A parse tree is constructed using application and ambiguitynodes. An application node represents the application of a production to a listof subtrees. An ambiguity node represents a set of possible parse trees for a(sub)string. By packing all trees for a substring into an ambiguity node, theseparses can be shared in all trees for strings containing the substring.For example, consider the following grammar of simple expressions with am-biguous addition and multiplication operator.sorts Expsyntax[a-z] -> ExpExp "+" Exp -> ExpExp "*" Exp -> ExpExp -> <START> 57



3 / scannerless generalized-lr parsing
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*Figure 3.8: Parse forest with sharing for ambiguous string a+b*c.To keep the example small, layout is not allowed between the tokens. Theparse forest for the ambiguous string a+b*c is shown in Figure 3.8. The ellipserepresents an ambiguity node. Observe that various subtrees are shared in theforest.3.8.2 Graph Structured StackA GLR parser deals with conicts in the parse table by maintaining a number ofstacks in parallel. Each time a parse stack leads to n conicting actions, n newstacks are created that continue the parse with those actions. These stacks arenot copies of the old stack. The new top nodes have pointers to the old stack. Ifin a later stage two stacks get into the same state, the stacks are merged again.In this manner a graph structured stack is built in which parses for ambiguoussubstrings are shared.A graph structured stack node consists of a state number and a list of links.Each link contains a reference to a node in the parse forest and a reference tothe previous stack.As an example of the working of a GLR parser, consider the sequence ofstack con�gurations during parsing the string a+b*c in Figure 3.9. This isthe parse that created the parse forest in Figure 3.8. The �gure shows thestacks during each cycle of the parsing algorithm. After shifting a character, allpossible reductions are performed and then the next character is shifted. Thetrees pointed to by the stack links are abbreviated by their yield using squarebrackets to show the structure. The symbol after the colon denotes the maintype of the tree at the link. We consider the con�gurations one by one.(a) The initial stack with state 0 is created. The character a is shifted.(+) The character a reduces to an expression using the production [a-z] ->58
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3 / scannerless generalized-lr parsingand 12 a shift can be performed with the next character *. Because bothshifts lead to a stack with state 9, a single stack is created that has linksto the two stacks.(c) The character * reduces to the literal "*". The character c is shifted.(\EOF) The character c reduces to an expression. Now there are two possiblereductions from the stack with state 13. First reduce [b*c] and thenreduce [a+[b*c]], or reduce [[a+b]*c]. Both reductions result in thecreation of a stack with state 1 with a link to the initial stack. Thesestacks are shared and an ambiguity node is created that represents thetwo possible parse trees. At this point the entire string has been read andthe next symbol is \EOF. Therefore, the expression is reduced to hSTARTiand the string is accepted. The stack with state 2 is the accepting stackand the tree pointed to by its link is the parse tree for the entire string.3.8.3 Reject ReductionsIn x3.4 disambiguation with reject productions was introduced in order to ex-press the prefer literals rule. In x3.7 we outlined a procedure for interpretingreject productions after parsing by pruning the parse forest. We would ratherinterpret reject productions during parsing to prevent trees containing rejectproductions from being built.To understand how this can be achieved, recall the parse forest in Figure 3.7that shows the ambiguity that is created when parsing the substring let inthe functional expression grammar de�ned in x3.4.1. It can be interpreted us-ing the lexical productions for variables or using the reject production "let"-> <Var-LEX> frejectg. Pruning this forest causes the ambiguity node tobe eliminated from the parse forest, thereby rejecting the reading of let as avariable.The parse con�gurations for this parse in Figure 3.10 show how this ambiguityis created. In the �rst three con�gurations the letters l, e and t are read.The fourth con�guration is the interesting one. There are three parses for thesubstring let: as a variable constructed with <[a-z]+-LEX>, as the literal "let"of the reject production "let" -> <Var-LEX>, and as the literal "let" as partof the let construct. The reduction of the literal results in a stack with state 12.The reduction of the lexical and the reject rule lead to a merged stack withstate 10 from where another reduction �rst leads to a stack with state 9 andthen leads to a term and a stack with state 14. From the states 9, 12 and 14parsing continues with a shift of the space character  (32) to state 6.The idea for the implementation of the reject rule is to forbid further actionswith a state that has been reached using a reject reduction. The link that iscreated when reducing with a reject production is marked as rejected. If alllinks of a stack are marked as rejected all shifts and reductions from that stateare forbidden.In the last con�guration of Figure 3.10 this would entail that the link from thestack with state 10 to the stack with state 4 is rejected. Therefore, the reduction60
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Generalized-LR Parsing / 3.8PARSE(table, �le)global accepting-stack := ;global active-stacks := fnew stack with state init(table)gdo global current-token := get-next-char(�le)PARSE-CHARACTER()SHIFTER()while current-token 6= \EOF ^ active-stacks 6= ;if accepting-stack contains a link to the initial stack with tree t thenreturn telsereturn parse-errorParse Character The list of active stacks is moved to the list of stacks of theactor that performs the actions for a stack unless the stack is rejected. The listof stacks for the actor is extended when reductions are performed. If actionsfor newly added stacks are performed before all links to it have been created, astack that becomes rejected might escape. Therefore, new stacks are added tofor-actor-delayed if they are rejectable and are only considered when all stackson for-actor are exhausted. Then stacks are taken from the delayed list in orderof priority. The operation `pop' removes the stack with the highest priority froma list of stacks.PARSE-CHARACTER()global for-actor := active-stacksglobal for-actor-delayed := ;global for-shifter := ;while for-actor 6= ; ^ for-actor-delayed 6= ; doif for-actor = ; thenfor-actor := fpop(for-actor-delayed )gfor each stack st 2 for-actor doif : all links of stack st rejected thenACTOR(st)Actor Handle the actions for stack st and the current token. A reduce actionis immediately handled. Shift actions are saved on for-shifter for handling ifafter all reductions have been performed. An accept action results in savingthe current stack as the accepting stack. An error action is ignored because thecurrent stack can be a wrong attempt while other stacks are still alive. Theentire parse fails if all stacks lead to error actions. This will become apparentafter shifting because no more active stacks will be alive.ACTOR(st)for each action a 2 actions(s, current-token) docase a ofshift(s) ) for-shifter := fhst; sig [ for-shifterreduce(�! A) ) DO-REDUCTIONS(st, �! A)accept ) accepting-stack := st 63



3 / scannerless generalized-lr parsingReductions Function do-reductions performs a reduction for stack st with pro-duction �! A. For each path of length j�j following the links from st to somestack st0 the trees along the path are collected and the reducer is called to han-dle the reduction.DO-REDUCTIONS(st, �! A)for each path from stack st to stack st0 of length j�j dokids := the trees of the links which form the path from st to st0REDUCER(st0, goto(state(st0), �! A), �! A, kids)Reducer Given a stack st, a state s, a production � ! A and a list of treeskids, the reducer creates the application node for the production and the listof direct descendants kids and creates a new stack with state s and a link tostack st. However, because there might already exist as stack with state s, thelist of active stacks is searched. If there is no such stack a new stack is created(else branch) and added to the list of active stacks and the list of stacks for theactor. The new stack has state s and a link with a pointer to the newly createdtree. If a stack with state s already exists and there is a direct link nl fromst1 to st0, an ambiguity has been found. The tree t is added to the ambiguitynode of the link. If there is no direct link, a new link is created from st1 to st0with t as parse tree. Because this new link entails that new reductions fromalready inspected stacks might be possible, all active stacks are reconsidered.In all cases, the link that is created or extended is marked as rejected if theproduction is a reject production.REDUCER(st, s, �! A, kids)t := application of �! A to kidsif 9st1 2 active-stacks : state(st1) = sif 9 a direct link nl from st1 to st0 thenadd t to the possibilities of the ambiguity node at tree(nl)if �! A is a reject production then mark link nl as rejectedelseadd a link nl from st1 to st0 with tree tif �! A is a reject production then mark link nl as rejectedfor each st2 2 active-stackssuch that : all links of st2 rejected^ st2 62 for-actor ^ st2 62 for-actor-delayed dofor each reduce(� ! A) 2 actions(state(st2), current-token)do DO-LIMITED-REDUCTIONS(st2, �! A, nl)elsest1 := new stack with state sadd a link nl from st1 to st0 with tree tactive-stacks := fst1g [ active-stacksif rejectable(state(st1)) thenfor-actor-delayed := push(st1, for-actor-delayed)64



Generalized-LR Parsing / 3.8elsefor-actor := fst1g [ for-actor-delayedif �! A is a reject production then mark link nl as rejectedLimited Reductions The function do-reductions is used to do all reductions forsome state and production that involve a path going trough link nl.DO-LIMITED-REDUCTIONS(st, �! A, l)for each path from stack st to stack st0 of length j�j going through link ldo kids := the trees of the links that form the path from st to st0REDUCER(st0, goto(state(st0), �! A), �! A, kids)Shifter After all possible reductions have been performed, for-shifter containsa list of stacks that can do a shift. Only these stack make it into the next cycleof the parse. The list of active stacks is reinitialized to the empty list. For eachstack st0 in for-shifter a new stack is created with a link to st0 with as tree thecurrent token. That is, if a stack with state s was already created only a linkfrom that stack to st0 is created.SHIFTER()active-stacks := ;t := current-tokenfor each hs; st0i 2 for-shifter doif 9st1 2 active-stacks: state(st1) = s thenadd a link from st1 to st0 with tree telsest1 := new stack with state sadd a link from st1 to st0 with tree tactive-stacks := fst1g [ active-stacksend3.8.5 RemarksThe algorithm above does not actually mark stacks as rejected, but the linkfrom a stack that is created with a reject production. Further action on a stackis forbidden if all links from that stacks are rejected. This is done because, inprinciple, there could be situations where two links are created from the samestack that are not merged (as is the case when the links are to the same stack)and only one is rejected. It is not clear whether such a situation can occur. Butthere is no proof of the contrary either.The ordering on states that is assumed in the priority pop operation used inprocedure PARSE-CHARACTER() is needed to ensure that nested reject pro-ductions are treated properly. For example, consider again a grammar extendedwith productions expressing the intersection of sorts A and B.A -> AminB A -> AandBB -> AminB {reject} AminB -> AandB {reject} AandB -> <Start>65



3 / scannerless generalized-lr parsing� AandB -> <Start>� A -> AandB� AminB -> AandB frejectg� A -> AminB� B -> AminB frejectg B � -> AminB frejectgAminB � -> AandB frejectg
A � -> AminBA � -> AandB
AandB � -> <Start>

ABAminBAandB0 1234Figure 3.12: Goto graph for grammar with nested reject productions.This gives rise to the goto graph in Figure 3.12. States 3 and 4 are rejectablebecause they can be reached with a reject production. When parsing a stringthat is in A and in B, state 2 is reached using the reduction for B. The nextreduce action with the reject production B -> AminB {reject} leads a stackwith state 3, which is rejected. No further action is taken from that stack. Thereduction of A -> AandB leads to a stack with state 4 and then, correctly, toacceptance of the string.Now consider the case where a string is in A, but not in B. Then there is noreduction to state 2 and hence state 3 is not rejected, but there is a reductionto state 3 using A -> AminB and a reduction to state 4 using A -> AandB. Nowthere are two rejectable stacks on the for-actor-delayed list. If the stack withstate 3 is released �rst a reduction with AminB -> AandB {reject} occurs andthe stack with state 4, which is still on for-actor-delayed, is rejected; and parsingfails as it should. However, if state 4 is released �rst, parsing succeeds beforethe stack with state 4 is rejected. It is clear that in this case state 3 has higherpriority than state 4.It is not clear how the ordering on states should be determined in general. Itwould seem that a state s1 with productions that are reachable from the produc-tions in a state s2 has higher priority. This is only a guess, however, and shouldbe worked out more carefully. For single, i.e., non-nested reject productions theordering plays no role. Therefore, the implementation of exclusion by means ofreject productions, of which prefer literals is a special case, is not dependent on�nding an ordering on states.3.9 ImplementationIn the previous sections we have presented an approach to scannerless parsing.These techniques are implemented as part of the SDF2 tools. The tools havebeen used to construct parsers for a number of languages including SDF2 it-self. Although no detailed data on the performance of the implementation areavailable at the time of this writing, a couple of preliminary observations canbe made nonetheless.66



Implementation / 3.9Grammar Normalizer The syntax de�nition formalism SDF2 is completelyspeci�ed in ASF+SDF. Part of the de�nition is the grammar normalizer dis-cussed in x3.3. This speci�cation has been compiled to an executable termrewriter, which has a reasonable performance. The literate speci�cation of SDF2and the normalization of syntax de�nitions is presented in Part II. The speci-�cation also de�nes the format of parse trees encoded in the ATerm format ofVan den Brand et al. (1997a).Parser Generator The parser generator described in x3.5 has been com-pletely speci�ed in ASF+SDF. The compiled speci�cation of the parser gener-ator is too ine�cient. It is probably necessary to implement this component inan imperative language that allows direct access instead of lookup in lists.There are several factors that make parser generation more di�cult comparedto normal SLR(1) parser generation for context-free grammars. There are moreitem-sets because of the productions for the lexical syntax. Extra productionsare added because of the reject productions expressing the prefer literals rule,this increases the number of items in item-sets. The goto table contains atransition for each production instead of a transition for each nonterminal. Thelast factor can be reduced by sharing transitions to the same state.Productions and item-sets are encoded by numbers. Character classes areimportant for reducing the size of the parse table. A set of actions that isshared by several characters is stored e�ciently by means of a character class,i.e., `actions' is a mapping from item-sets and character classes to sets of actions.Parser The SGLR parsing algoritm has been implemented in C. The imple-mentation makes use of the C implementation of ATerms (Van den Brand et al.,1997a) to represent stacks and trees.The parser includes visualization tools for parse forests and graph structuredparse stacks that were used to produce the pictures in this chapter. The forestvizualization might be used as basis for an interactive disambiguation tool.The C implementation of the SGLR parsing algorithm seems reasonably ef-�cient, although sharing of trees can be improved. Output of parse trees isnot optimal because sharing of subtrees is completely lost when writing out aparse forest in a linear term format. This can solved by using a linear encodingof graphs such as the graph exchange language GEL of Kamperman (1994).Furthermore, a mark-scan garbage collector for stack and tree nodes is used.This entails that all stack and tree nodes are visited on a collect, which is tooexpensive, since a large amount of the heap will not change status. A referencecount garbage collector should make a di�erence.Complexity of Lexical Analysis We have performed a few experiments toget an idea of the complexity of lexical analysis with scannerless generalized-LR parsers. The experiments were based on the simple expression grammar inx3.2. The experiments that were performed were of the form: (a) Parsing asingle identi�er of increasing length (up to 425KB). (b) Parsing an expressionconsisting of ten additions with identi�er arguments of increasing length (upto 325KB). (c) Parsing an expression consisting of an increasing number ofadditions (up to 16K arguments with length 490KB). 67



3 / scannerless generalized-lr parsingFor all these experiments we saw an almost linear behaviour for small �lesdeteriorating to square behaviour for the large �les. However, when garbagecollection was turned o�, this behaviour changed into linear for all experiments.This con�rms the observation about the inappropriateness of the garbage collec-tion algorithm. It also con�rms the idea that lexical analysis will behave linearlyfor simple, i.e., regular lexical syntax. The prototype implementation should befurther optimized before its performance can meaningfully be compared to scan-ner/parser combinations such as LEX/YACC. Nonetheless, these experimentsshow the feasibility of the scannerless generlized-LR parsing approach.3.10 Related WorkThe syntax de�nition formalism SDF2 is formally speci�ed in Part II. The spec-i�cation in ASF+SDF comprises the syntax of the formalism, the normalizationprocedure and the parse tree format de�ned by a grammar.The syntax de�nition formalism SDF of Heering et al. (1989) was the startingpoint for the work discussed in this chapter. The de�nition of SDF2 grew outof the speci�cation of SDF in ASF+SDF. A number of generalizations whereapplied to make the formalism more orthogonal and uniform and a numberof improvements and new features were added based on the experience withSDF in the ASF+SDF Meta-Environment (Klint, 1993). SDF introduced theintegration of lexical syntax and context-free syntax, but only at the formal-ism level. In the implementation, an SDF de�nition is mapped to a regulargrammar de�ning the lexical syntax and a context-free grammar de�nining thecontext-free syntax. The scanners produced for the lexical syntax yield a graphstructured stream of all possible tokenizations of the input �ltered by a setof lexical disambiguation rules. Although this is a fairly advanced setup, theinterface su�ers from several of the problems that we discussed in x3.1 and x3.2.The generalized-LR parsing algorithm was �rst developed by Tomita (1985)for application in natural language processing. It was later improved by Rekers(1992) and applied in the ASF+SDF Meta-Environment for parsing of program-ming languages. The algorithm presented in x3.8 is based on Rekers' version.Wagner and Graham (1997) describe the use of GLR parsing in incrementalparsing of programming languages. Earley (1970) described the �rst generalizedparsing algorithm that is closely related to the LR algorithm of Knuth (1965).A more recent approach to parsing with dynamic lookahead is the extension oftop-down parsing with syntactic predicates of Parr and Quong (1994).Scannerless parsing was introduced by Salomon and Cormack (1989, 1995).They de�ne an extension of SLR(1) parsing in which the lack of lookaheadis repaired by extending item-sets if conicts are found. This non-canonicalSLR(1) parser generation works only for a limited set of grammars, makinggrammar development di�cult. The follow restrictions presented in this chapterare a simpli�cation of the adjacency restriction rule of the NSLR(1) approach inwhich arbitrary grammar symbols can be forbidden to be adjacent. Our rejectproductions are called exclusion rules by Salomon and Cormack (1989, 1995).68



Conclusions / 3.11We have presented a complete implementation for follow restrictions and rejectproductions, whereas the adjacency restrictions and exclusion rules are onlypartially implemented in NSLR(1) parsing.A similar approach using GLR parsing is tried in the area of natural languageprocessing. Tanaka et al. (1996) discuss the integration of morphological andsyntactic analysis of Japanese sentences in a single GLR parser. The morpholog-ical rules describe how words can be formed from characters. Segmentation ofa string of characters into a string of words is guided by a connection matrix re-stricting the categories that can be adjacent in a sentence. These rules do usuallynot su�ce to �nd an unambiguous segmentation. by integrating morphologicalcomposition into the context-free grammar of the syntactic phase, such `contex-tual' ambiguities can be avoided. This creates the problem of disambiguatingthe combined context-free grammar usingthe morphological connection matrix.This is partly done as a �lter on the generated LR table and partly dynamicallyduring parsing.Disambiguation by means of priority and associativity declarations was in-troduced simultaneously by Aho et al. (1975) and Earley (1975). The formerdescribe the solution of conicts in LR parse tables by means of a restricted formof priorities. Aasa (1991, 1992) describes the solution of LR table conicts bymeans of precedence declarations. Thorup (1992, 1994a, 1994b) describes thesolution of parse table conicts by means of a collection of excluded subtrees.The method is more expressive than the priorities of SDF, but only succeeds ifall conicts are solved, which is not guaranteed.In Chapter 4 logical disambiguation methods are formalized as disambiguation�lters on sets of parse trees. Based on this approach an e�cient implementationof disambiguation by priorities is derived in Chapter 5 from the disambiguation�lter for priorities. This derivation forms the foundation for the parser generatoralgorithm presented in this chapter.3.11 ConclusionsIn this chapter we have presented a new approach to parsing that has severaladvantages over conventional techniques. It overcomes the drawbacks of the tra-ditional scanner/parser interface by abolishing the scanner completely (hencethe name scannerless parsing). The lexical and context-free syntax of a lan-guage are described in a single integrated uniform grammar formalism. Lexicalambiguities can frequently be solved by means of the parsing context. Lexicalstructure and layout are preserved in the parse tree and thus accessible in se-mantic tools. A more expressive formalism for lexical syntax is obtained, suchthat for example nested comments can be expressed.The approach encompasses an expressive syntax de�nition formalism. Agrammar normalizer to reduce the complexity of the formalism by simplify-ing syntax de�nitions to context-free grammars with a few extensions. AnSLR(1) parser generator that deals with character-classes, follow restrictionsand priority and associativity rules. A generalized-LR parser that can be used69



3 / scannerless generalized-lr parsingfor arbitrary context-free grammars with reject productions, at least if theyare not nested. In parsing unambiguous languages, the GLR parser is used todynamically handle lookahead problems by forking o� parsers in parallel.Reject productions turn out to be a very expressive device that brings us outof the domain of context-free languages. It is as yet unclear how expressive thisformalism is exactly, but we have a lower bound|stronger than context-freebecause it describes anbncn|and an upper bound because the parsing problemis decidable.Priorities are compiled into the parse table such that no parse trees withpriority conicts can be produced by the parser. This reduces the size of theparse forest (in case of ambiguous binary expressions the parse forest growsexponentially) and decreases the number of paths in the graph structured stack.The technique is more general than conventional techniques for this kind ofdisambiguation and works even if there remain conicts in the parse table dueto other causes. For instance, if the grammar requires more lookahead than theparser generator provides.An open issue is the fully automatic derivation of lexical disambiguation rulesfrom the grammar that would make the method still easier to use. Apart fromthis minor point, scannerless generalized-LR parsing is a feasible parsing methodthat makes syntax de�nition more expressive and solves a number of problemswith conventional parsing approaches.
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4Disambiguation FiltersAn ambiguous context-free grammar de�nes a language in which some sen-tences have multiple interpretations. For conciseness, ambiguous context-freegrammars are frequently used to de�ne even completely unambiguous languagesand numerous disambiguation methods exist for specifying which interpretationis the intended one for each sentence. The existing methods can be divided in`parser speci�c' methods that describe how some parsing technique deals withambiguous sentences and `logical' methods that describe the intended interpre-tation without reference to a speci�c parsing technique.We propose a framework of �lters to describe and compare a wide range ofdisambiguation problems in a parser-independent way. A �lter is a functionthat selects from a set of parse trees (the canonical representation of the inter-pretations of a sentence) the intended trees. The framework enables us to de�neseveral general properties of disambiguation methods. The expressive power of�lters is illustrated by several case studies.4.1 IntroductionIn the last two decades we have seen the successful development of theory andimplementation techniques for e�cient, deterministic, parsing of languages de-�ned by context-free grammars. As a consequence, the LL(k) and LR(k) gram-mar classes and associated parsing algorithms are now dominating the �eld.Using parsing techniques based on these subclasses of the context-free gram-mars has, however, several drawbacks. First of all, syntax de�nitions may needto be brought into an acceptable, but often unnatural, form that obeys therestrictions imposed by the grammar class being used. More importantly, sub-classes of the context-free grammars are not closed under composition, e.g.,composing two LR(1) grammars does not necessarily yield an LR(1) grammar.Only the class of context-free grammars itself can support the composition ofgrammars which is essential for the support and development of modular gram-mar de�nitions.The use of natural, modular, grammars is becoming feasible due to the recentadvances in parsing technology for arbitrary context-free grammars. Unfortu-nately, when leaving the established �eld of deterministic parsing one encounters71



4 / disambiguation filtersa next obstacle: the language de�ned by a grammar may become ambiguous andmechanisms are needed to disambiguate the parse forest (rather than the singleparse tree) that will be produced by the parser. Disambiguation encompassesthe whole spectrum from simple priority declarations for resolving ambiguitiesin arithmetic expressions to the use of semantic (e.g., type) information forpruning the parse forest. As a last resort, the user of the parser may have toresolve ambiguities interactively.In this chapter we explore disambiguation mechanisms for general context-free grammars and their impact on parsing. We will concentrate on \logical"disambiguation that can be modeled by a �lter on sets of parse trees. Thisexcludes disambiguation methods that are inherently intertwined with a spe-ci�c parsing technique. We study the expressiveness of various �lters and theirinteraction with parsing: as a general rule simpler �lters can be applied earlier(during parsing or even during parser generation).This research was motivated by our experience with the modular syntax def-inition formalism SDF (Heering et al., 1989) and its implementation based ongeneralized LR parsing (Rekers, 1992). Although quite elaborate disambigua-tion techniques are being used (local conict detection based on priority andassociativity, and a multi-set ordering for pruning the parse forest) we keepencountering examples where more �ne-tuned �ltering would be useful. Thissuggests an approach based on extensible, user-de�ned, disambiguation �lters.For e�ciency reasons, it will be advantageous to apply these �lters as early aspossible.The rest of this chapter is structured as follows. In x4.2 we consider severalcharacteristics of disambiguation methods. In x4.3 we introduce some prelimi-nary terminology about context-free grammars and parsing. In x4.4 we de�nethe notion �lter on sets of parse trees, the disambiguation of a context-freegrammar by a �lter and several properties of �lters. In x4.4.4 through x4.8 wediscuss several examples illustrating the expressive power of �lters. Finally inx4.9 we discuss related work and related issues.4.2 DisambiguationA disambiguation mechanism for context-free languages is a procedure thatchooses from a range of possible parses for a sentence the most appropriate oneaccording to some criterion. The architecture we propose to use for disambigua-tion consists of three parts (see Figure 4.1):Language description: A context-free grammar and a set of disambiguationrules. Disambiguation rules concern lexical disambiguation rules (e.g., prefer-ence for a longest match, preference for keywords over identi�ers), context-freedisambiguation rules (e.g., precedence relations between operators), and staticsemantic disambiguation rules (e.g., type or declaration dependent rules).Generation phase: A grammar transformer and a parser generator. Typicalgrammar transformations are the elimination of left/right recursion, and the72



Disambiguation / 4.2CFG
TransformationsCFG0Parser Generator

ParserSentence Forest Filter Tree

DisambiguationRules

Figure 4.1: Phases in parsing with ambiguous grammarscoding of priority and associativity information in grammar rules. Parser gen-eration is most likely based on standard Generalized-LR techniques (Tomita,1985, Rekers, 1992).Parsing phase: A parser/�lter pipeline that transforms input sentences intoa single (unambiguous) parse tree.Given this architecture, we can classify disambiguation methods according tothe following characteristics:Interference of context-free grammar and disambiguation rules. Figure 4.1suggests that the given context-free grammar and disambiguation rules are com-pletely disjoint. In many grammar formalisms, however, they will interfere witheach other. For instance, disambiguation rules may be embedded in grammarrules, or the order of grammar rules may have a signi�cance for disambiguation.In this chapter, we will keep them disjoint.Dependence on parsing method Disambiguation can be de�ned in terms ofparse actions (and is then closely intertwined with parsing) or it can be under-73



4 / disambiguation filtersstood independently from the parsing method used. We will adopt this latterview and we consider the �rst approach only when it is an implementationmethod of the latter.Moment of disambiguation Disambiguation can take place during grammartransformation, during parser generation, and during post-parse �ltering. As ageneral rule, deferring disambiguation is expensive but can be used to implementvery general methods. Our strategy will be to de�ne all disambiguation methodsas post-parse �lters and to seek implementation techniques that apply them(transparently but more e�ciently) at an earlier moment.Semantic assumptions An issue in the disambiguation of grammars is thequestion whether the derivations of an ambiguous sentence should all have thesame meaning. In natural language parsing, this is clearly not true. In someother approaches such as for example the approach of Thorup (1994a, 1994b)this seems an essential assumption. In addition, it is not clear whether eachsentence generated by the underlying context-free grammar should also be asentence of the disambiguated grammar. This property is called `completeness'in Thorup (1994a). But if we consider the language of type-correct Pascalprograms we see that this property does not hold.4.3 Preliminaries4.3.1 Context-free GrammarsDe�nition 4.3.1 (Context-free Grammar) A context-free grammar G is atriple hVN ; VT ;Pi, where VN is a �nite set of nonterminal symbols, VT a �niteset of terminal symbols, V the �nite set of symbols of G is VN [VT , and P(G) =P � V � � VN a set of productions. We write � ! A for a production p =h�;Ai 2 P(G). (We will sometimes refer to a production by a number or by anabbreviation of its symbols, e.g., E +E ! E is abbreviated as +.) 2The next de�nitions characterize the language generated by a context-freegrammar by the parse trees it generates instead of by derivations. This methodis as clear as derivations and has the advantage that the semantics of �lters iseasily de�nable.De�nition 4.3.2 (Parse Trees) A context-free grammar G generates a familyof sets of parse trees T (G) = (T (G)(X) j X 2 V ), which contains the minimalsets T (G)(X) such that X 2 VX 2 T (G)(X)A1 : : : An ! A 2 P(G); t1 2 T (G)(A1); : : : ; tn 2 T (G)(An)[t1 : : : tn ! A] 2 T (G)(A)We will write t� for a list t1 : : : tn of trees where � is the list of symbolsX1 : : : Xnand ti 2 T (G)(Xi) for 1 � i � n. Correspondingly we will denote the set of74



Preliminaries / 4.3all lists of trees of type � as T (G)(�). Using this notation [t1 : : : tn ! A] canbe written as [t� ! A] and the concatenation of two lists of trees t� and t� iswritten as t�t� and yields a list of trees of type ��. The signature of a tree isthe production used to construct the root of a tree: sign([t� ! A]) = � ! A.2We omit the argument G from T (G) when the grammar G is clear from con-text. We will identify T and SX2V T (X) when appropriate. According to thisde�nition we should write [[a! E] + [b! E]! E] for a tree with yield a+ b.When no ambiguity arises we will often write this as [a+ b], using only bracketsto indicate the tree structure.De�nition 4.3.3 (Yield) The yield of a tree t is the string containing allleaves from left to right, i.e.,yield(X) = X; if X 2 VTyield([t1 : : : tn ! A]) = yield(t1) � � � yield(tn)The pointwise extension of yield to sets of parse trees is de�ned by yield(�) =fyield(t) j t 2 �g. 2De�nition 4.3.4 (Language) The language L(G) generated by a context-freegrammar G is the set of strings yield(T (G)). The language L(G)(A) generatedby nonterminal A is the set yield(T (G)(A)). 2A context-free grammar is ambiguous if it generates at least two di�erenttrees t and s such that yield(t) = yield(s). Derivation in the classical semanticsof context-free grammars and parse trees are similar notions as is witnessed bythe following proposition.Proposition 4.3.5 For any context-free grammar G and any A 2 VN , � 2 V �:�!�G A () � 2 L(G)(A) 24.3.2 Parse ForestsA parse forest is a compact representation of a set of parse trees with the sameyield. Compaction is achieved by sharing common subtrees and by packingdi�erent trees for the same yield in one node. Parse forests can be described bycontexts and sets of contexts.De�nition 4.3.6 (Contexts) A context C[�] is a parse tree with exactly oneoccurrence of a hole �. The instantiation C[t] of a context C[�] is constructedby replacing the hole � by the tree t. We denote the set fC[t] j t 2 �g by C[�].Similarly, �[�] denotes a set of contexts and its instantiation �[t] is de�ned asfC[t] j C[�] 2 �[�]g. 275



4 / disambiguation filtersSharing of a tree t by a set of trees is represented by the instantiation �[t] ofa set of contexts. Packing of a set of trees in a single node is represented by theinstantiation C[�] of a context with a set of trees. Sharing of a packed node bya set of trees is denoted by �[�].4.3.3 ParsingDe�nition 4.3.7 (Parser) A parser is a function � that maps each stringw 2 V �T to a set of parse trees. A parser � accepts a string w if j�(w)j > 0.A parser � is deterministic if j�(w)j � 1 for all strings w. A parser for acontext-free grammar G that accepts exactly the sentences in L(G) is de�ned by�(G)(w) = ft 2 T j yield(t) = wg 2We restrict our attention to pure parsers that do not modify parse trees duringparsing. An example of an implementation of parsers for arbitrary context-freegrammars is Tomita's generalized LR algorithm (Lang, 1974, Tomita, 1985, Rek-ers, 1992). Such a generalized parser produces a parse forest as representationof a set of trees by packing all trees for a subsentence v, the set � = �(G)(v), ina single node and sharing that node in all trees built for the sentence in which vis embedded, i.e., if uvw is a sentence and parsing the sentence u � w produces�(G)(u �w) = �[�] then the forest for the whole sentence can be constructed as�(G)(uvw) � �[�].4.4 FiltersAmbiguous context-free grammars produce multiple interpretations for some ofthe sentences they generate. A programming language de�nition should unam-biguously assign to each string a single interpretation. Therefore, if a languagede�nition is based on a context-free grammar, it should select from the multipleinterpretations given by the grammar the most appropriate one. We formalizethe speci�cation of selection of an appropriate interpretation by the notion ofparse tree �lters. It will turn out that most `logical' disambiguation methodscan be expressed by means of �lters.De�nition 4.4.1 (Filter) A �lter F for a context-free grammar G is a functionF : }(T ) ! }(T ) that maps sets of parse trees to sets of parse trees, whereF(�) � � for any � � T . The disambiguation of a context-free grammar G bya �lter F is denoted by G=F . The language generated by G=F is the setL(G=F) = fw 2 V �T j 9� � T (G) : yield(�) = fwg ^ F(�) = �g;i.e., a string w is a sentence if there exists some non-empty parse forest � withyield w from which no trees are removed by the �lter F . The interpretation of astring w by G=F is the set of trees F(�(G)(w)). A �lter F2 is also applicable to adisambiguated grammar G=F1, which is denoted by (G=F1)=F2 and is equivalentto G=(F2 � F1). 276



Filters / 4.4Given a set of parse trees � for some sentence w, a �lter selects the `correct'parse tree(s) in � yielding a reduced set of trees �0 � �. The condition F(�) �� ensures that �lters do indeed reduce the set of trees instead of inventing newones. A trivial example of a �lter that satis�es this condition is the identityfunction on sets of parse trees. Often we will de�ne a �lter in negative terms byspecifying which trees are wrong in some sense and then throw away the wrongtrees from a set of trees. Observe that a disambiguated context-free grammarG=F generates a subset of the language generated by G, i.e., a string w is onlyin the language generated by G=F if there is at least one tree with yield w thatis not rejected by the �lter.This is a very general de�nition allowing arbitrary functions as �lters. Laterin this chapter we will consider several classes of �lters that use less powerfulfunctions.4.4.1 Properties of FiltersWe now investigate several properties of �lters.De�nition 4.4.2 (Completely Disambiguating) A �lter is completely dis-ambiguating when jF(�(G)(w))j � 1 for all w 2 V �. 2This is a useful property if the parse trees are input for a next, semantic,processing phase. No provisions have to be made for sets of trees in such aphase. A more restrictive property is completeness.De�nition 4.4.3 (Complete, Thorup (1994a)) A �lter F is complete for acontext-free grammar G if w 2 L(G)) jF(�(G)(w))j = 1. 2Actually, Thorup de�nes a parser to be complete if it produces exactly one`canonical' parse tree for each sentence in the language of its underlying context-free grammar.Corollary 4.4.4 If F is complete for G then L(G) = L(G=F) 2De�nition 4.4.5 (Local) A �lter F for a context-free grammar G is local iffor each set of contexts �[�] � T [�] and each � � TF(�[�]) � �[F(�)]A �lter is global if it is not local. 2Global �lters are counter intuitive. Rejection by a global �lter of a tree forsome substring of a sentence does not imply that that tree can not be a subtreeof a parse tree for the sentence. A local �lter is transparent. A rejected treecan not be a subtree of any larger tree. This means that a local �lter can beapplied to a local ambiguity instead of to the entire set of complete parse treesfor a sentence. It seems that a disambiguation method that can be de�ned interms of a local �lter is both intuitive and easy to implement. 77



4 / disambiguation filtersDe�nition 4.4.6 (Incremental) A �lter F is incremental if, for each pair ofsets of parse trees �1, �2, we have F(F(�1) [ F(�2)) = F(�1 [ �2) 2A generalized parser constructs sets of parse trees for local ambiguities in anincremental fashion. If a �lter is incremental, it can be applied to a set wheneveran element is added. If it is not incremental application to a set is only legal ifthe set is completed.De�nition 4.4.7 (Commutative) Two �lters F1 and F2 are commutative if,for each set of trees �, we have that F1(F2(�)) = F2(F1(�)) i.e, if their com-position commutes: G=F1 � F2 = G=F2 � F1 2De�nition 4.4.8 (Context-free) A �lter F for a context-free grammar G iscontext-free if there is an unambiguous context-free grammar G0 and a functiontr : T (G0) ! T (G) such that L(G0) = L(G=F), i.e., G0 generates the same lan-guage as G=F , and ftr(�(G0)(w))g = F(�(G)(w)). A �lter is context-dependentif it is not context-free. 24.4.2 Speci�cation of FiltersFilters can be de�ned in many ways. We will consider two special classes of�lters that are de�ned in terms of predicates and relations on trees.De�nition 4.4.9 (Property Filter) The property �lter FE generated by theunary predicate E (exclude) on trees is de�ned byFEA(�) = ft 2 � j :E(t)gA predicate E is compositional if for each tree t and each context C[�] E(t) )E(C[t]). 2A �lter FE selects all trees which do not have property E . The predicatecharacterizes, for instance, trees with a conict. Compositionality of a �lter-predicate ensures that if a tree has a conict, any tree composed from it hasa conict as well. This implies that to understand a conict in a sentence oneonly has to consider the smallest part of the sentence that has the conict.Proposition 4.4.10 A �lter FE is local i� E is compositional.Proof. (() Let �[�] a set of contexts and � a set of trees. If t 2 F(�[�]), then:E(t) and t = C[t0] such that C[�] 2 �[�] and t0 2 �. Since E is compositionalwe have that :E(t0) and therefore t0 2 F(�) and thus t 2 �[F(�)]. ()) AssumeE is not compositional, i.e., there is some tree t and context C[�], such that E(t)and not E(C[t]). Then F(fC[t]g) = fC[t]g 6� ; = C[F(ftg)] and thus FE is notlocal. 2De�nition 4.4.11 The predicate E is de�ned in terms of E by E(t) = 9s 2sub(t) : E(s), where sub(t) denotes the set of all subtrees of t. 278



Filters / 4.4Note that E is always compositional.De�nition 4.4.12 (Comparison Filter) The comparison �lter F� generatedby the relation � is de�ned byF�(�) = ft 2 � j :9t0 2 � : t0 � tgA relation � is compositional if 8s; t; C[�] : s � t) C[s] � C[t]. 2A �lter F� selects the minimal trees in a set according to the order �. Notethat if � is reexive or symmetric, the �lter F� rejects all trees. For instance,given any context-free grammar G, G=F= de�nes the empty language. Thenotation � suggests that the most useful �lters of this kind are based on strictpartial orders, i.e., if � is transitive, irreexive and antisymmetric. If � is astrict partial order, F� is monotonous, i.e., F�(�1) � F�(�2) if �1 � �2,which adds to the clarity of a disambiguation method.Proposition 4.4.13 A �lter F� is local i� � is compositional.Proof. (() Assume F not local, i.e., there are �[�], � and s = C[s0] 2 �[�]such that s 2 F(�[�]) but s 62 �[F(�)]. Thus :9t 2 �[�] : t � s, i.e., 8t 2�[�] : :t � s and especially 8t0 2 � : :C[t0] � C[s0] then, by compositionalityof �, 8t0 2 � : :t0 � s0 which is equivalent to :9t0 2 � : t0 � s0 but this isin contradiction with 9t0 2 � : t0 � s0 which follows from s 62 �[F(�)]. ())Assume that � is not compositional, i.e., there are some s, t and C[�] such thats � t^:C[s] � C[t]. But then F(C[fs; tg]) = C[fs; tg] 6� C[fsg] = C[F(fs; tg)],which contradicts the fact that F is local. 24.4.3 Parsers for Disambiguated GrammarsBy de�nition a �lter can always be used as a post-parse procedure to prune theparse forest, i.e., �(G=F) = F � �(G). For e�ciency reasons it is attractive toapply the disambiguation rules described by a �lter as early in the parse processas possible.The problem of producing the most e�cient parser from an abstract speci�-cation of a �lter is probably undecidable. However, for certain classes of �lterse�cient parsers are possible. By considering many disambiguation methods inthis one framework of �lters crossovers between implementation strategies mightarise.De�nition 4.4.14 (Approximation) An approximation of a parser for G=Fis a parser � such that for any string w F(�(G)(w)) � �(w) � �(G)(w) 2If F is a local �lter for a context-free grammar G, we can construct an ap-proximation � for G=F by �ltering any local ambiguity as soon as it is con-structed. Formally, if �(G)(v)(A) = � and �(G)(u �A w)(B) = �[�A] then�(uvw) � �[F(�)]. If there are no trees left in a local ambiguity the parser thatcorresponds to it can be stopped, yielding the empty set of trees. 79



4 / disambiguation filtersParsing schemata are abstract speci�cations of parsing algorithms. In Chap-ter 5 we start an investigation of the implementation of parsers for grammarsdisambiguated by �lters based on parsing schemata.4.4.4 Case StudiesIn order to assess the feasibility of using �lters for the disambiguation of context-free grammars we present several case studies that illustrate the expressive powerof our method.Priorities are a conventional tool for disambiguation and have been proposedin many forms. In x4.5 we study the disambiguation mechanism of SDF whichconsists of a �lter for priority conicts and a �lter for priority comparisons, bothderived from a single priority declaration.Extensible languages are typical examples of languages that are not in thescope of context-free grammars disambiguated by �lters. The de�nition of a�lter presumes a set of possible trees from which it selects appropriate ones.A grammar for an extensible language must somehow describe how new pro-ductions, i.e., new tree forms, can be introduced. However, restricted forms ofextensibility, like Prolog's user-de�ned operators, are in the range of �lters aswill be discussed in x4.6.Landin's o�side rule is a disambiguation method based on indentation. Inx4.7 we de�ne this method by a �lter.A restricted class of �lters based on pattern matching is described in x4.8.4.5 PrioritiesDisambiguation by precedences or priorities is used by many grammar for-malisms in various instantiations (Earley, 1975, Aho et al., 1975, Johnson, 1975,Heering et al., 1989, Aasa, 1992). In this and the next section we study prioritiesin the syntax de�nition formalism SDF of Heering et al. (1989). An SDF prior-ity declaration induces a strict partial order on grammar productions combinedwith associativity declarations. From the priority and associativity declarationsR two �lters FER and F�R are derived. The �rst removes trees with prior-ity conicts and the second selects trees which are minimal with respect to amulti-set ordering on trees.We do not use the notation of SDF for the declaration of priorities but anotation similar to Earley's notation for precedence rules in Earley (1975) thatis more suitable for theoretical exposition as in this paper. The concrete notationof SDF can be translated to the abstract notation used here. There have beenmany proposals for the interpretation of SDF priorities. Here we follow Klint(1988).4.5.1 Priority ConictsDe�nition 4.5.1 (Priority Declaration) A priority declaration R for a con-text-free grammar G is a tuple hL;R;N; >i, where � � P(G) � P for � 280



Priorities / 4.5fL;R;N; >g, such that L, R and N are symmetric and > is irreexive andtransitive. 2The relations L, R and N declare left-, right- and non-associativity, respec-tively, between productions. The relation > declares priority between produc-tions. A tree with signature p1 can not be a child of a tree with signature p2 ifp2 > p1.De�nition 4.5.2 (Priority Conict) A tree t has a root priority conictER(t) if one of the following rules appliesA! B� (RR [NR) B ! �ER([[t� ! B] s� ! A])A! �B (LR [ NR) B ! �ER([s� [t� ! B]! A])A! �B >R B ! �ER([s� [t� ! B] s ! A])A tree t has a priority conict, if ER(t). 2According to De�nition 4.4.9 we can now construct the �lter FER . Thus thesemantics of the pair hG;Ri is the disambiguated context-free grammar G=FER .By de�nition of E in terms of E we have the following:Corollary 4.5.3 FER is a local �lter. 2Example 4.5.4 The usual example for priorities is the following grammar Gexpfor arithmetic expressionsE +E ! E �E ! EE �E ! E (E)! EE �E ! E a! EE " E ! E b! Ethat is completely disambiguated by the priority relation Rexp:�E > " > � > f+;�g; + L +; � L�; + L�; � L �; " R "Now we have, for instance,FERexp (�(Gexp)(a+ b+ c)) = FERexp (f[a+ [b+ c]]; [[a+ b] + c]g)= f[[a+ b] + c]gbecause + L + 281



4 / disambiguation filtersAccording to the de�nition above a root priority conict of a tree can bedetected by looking at the signature of the tree and at the signatures of itschildren. The following version of the predicate is somewhat stronger in that itlooks through chain rules.De�nition 4.5.5 (Chain Rule Elimination) The function ecr (chain ruleelimination) yields the �rst subtree that is not an application of a chain rule:ecr(X) = Xecr([tB ! A]) = ecr(tB)ecr([t� ! A]) = [ecr�(t�)! A]; if j�j 6= 1 2De�nition 4.5.6 (Priority Conict / Chain Rule) A tree t has a root pri-ority conict modulo chain rules (ERc (t)) ERc (t) () ER(ecr(t)) 24.5.2 Multi-set OrderingAfter selecting the conict-free trees from a set there might still be more thanone tree in the set. The next �lter that is used by SDF selects trees by comparingtrees with respect to a multi-set ordering � on trees.De�nition 4.5.7 (Multi-set) A multi-set is a function M : P(G) ! N thatmaps productions to the number of their occurrences in the set. The unionM ]N of two multi-sets M and N is de�ned as M ]N(p) =M(p)+N(p). Theempty multi-set is denoted by ;, i.e., ;(p) = 0 for any p. We write p 2 M forM(p) > 0. A multi-set with a �nite number of elements with a �nite numberof occurrences can be written as M = fp1; p1; : : : ; p2; : : : g, where M(p) is thenumber of occurrences of p in the list. 2De�nition 4.5.8 (Tree as Multi-set) A tree t is translated to a multi-set by� : T ! (P(G)! N) as X = ;[t1 : : : tn ! A] = f�! Ag ] t1 ] : : : ] tn;if �! A = sign([t1 : : : tn ! A]) 2De�nition 4.5.9 (Multi-set Order) Given some priority declaration R, theorder �R on multi-sets is de�ned such that M �R N i�M 6= N ^ 8y 2M :M(y) > N(y)) 9x 2 N : y >R x ^M(x) < N(x) 2The motivation for this ordering is that it prefers parse trees that are con-structed with the smallest possible number of productions of the highest possiblepriority.Given a priority declaration R, we can now construct the �lter F�R usingDe�nition 4.4.12 that selects those trees which are minimal with respect to themulti-set ordering induced by the priority declarations.82



Priorities / 4.5Proposition 4.5.10 (Klint (1988)) The multi-set ordering �R on trees iscompositional.Proof. (a) If t1 �R t2 then t1 6= t2 and thus T1 = C[t1] 6= C[t2] = T2. (b)Assume T1(y) > T2(y), then t1(y) > t2(y). Since t1 �R t2, 9x 2 t2 : y >Rx ^ t1(x) < t2(x), then also 9x 2 T2 : y >R x ^ T1(x) < T2(x). From (a) and(b) we conclude that C[t1] �R C[t2]. 2Example 4.5.11 The following grammar is a typical example of the working ofthe multi-set order for the disambiguation of overloaded operators. Expressionsover natural numbers,(n) and real numbers (r) with addition and multiplicationde�ned on both types of numbers. The natural numbers are included in the realnumbers by means of the injection N ! R.r ! R n! NR +R! R N +N ! NR �R! R N �N ! NN ! RThis grammar is disambiguated by means of the following priority declaration:�N > �R > +N > +R; +N L +N ;+R L +RGiven the string n+ n the following trees are generated by the grammar (withnumber of occurrences of productions):[[n! N ] + [n! N ]! N ][[n! R] + [n! R]! R]The �rst tree contains one occurrence of addition on natural numbers, whilethe second contains an occurrence of addition on real numbers. Because ofthe priority +N > +R, the �rst tree is lower in the multi-set ordering and istherefore selected by the �lter. Some other combinations of strings and trees:n+ n+ n [[n+ n! N ] + n! N ]n+ n+ r [[[n+ n! N ]! R] + r ! R]n+ n � r [[n! R] + [[n! R] � r ! R]! R] 24.5.3 Shortcomings of PrioritiesThe following examples give illustrations of grammars that can not or not ap-propriately be disambiguated with priority rules.Example 4.5.12 A well-known example is the following grammar Gie for con-ditional statements with a dangling-else construct.i S e S ! Si S ! S 83



4 / disambiguation filtersIt is disambiguated by the priority declarationRie: i e > i. This disambiguationis correct according to the conventional solution of this problem in that it forbidsan i as �rst descendant of i e, as we can see from the parses of the sentenceiiSeS: Rie(�(Gie)(iiSeS)) = Rie(f[i[iS]eS]); [i[iSeS]]g) = f[i[iSeS]]gwhere the �rst parse is �ltered out because it contains a priority conict againstie > i. However, the sentence iSeiS is not a member of L(Gie=R) since [iSe[iS]]is the only tree in T (S) with the right yield and it has a priority conict againstie > i. 2Example 4.5.13 Another problem of precedences is posed by the followinggrammar that de�nes arithmetic expressions by one generic production for bi-nary operators. E O E ! E; +! O; � ! O; � � �This grammar can not be disambiguated like the grammars in Example 4.5.4,although it is useful when generic operations on the trees have to be de�ned. 24.6 Prolog OperatorsSeveral languages have mechanisms for introducing new in�x, pre�x and post�xoperators and declaring their precedence and associativity. Here we study amechanism that allows the user to introduce new operators with relative priorityinstead of with absolute priority as in Prolog (Bratko, 1990). The meaning ofthe priorities is the same as in the previous sections, but since the prioritydeclarations are part of the tree, the de�nition of the �lter is more complicated.The context-free grammar Gprolog describes a language of programs P thatconsist of a list of clauses C that are either operator declarations D or ex-pressions E. There is an in�nite supply of operators O and priority betweenoperators can be declared by the relations R, L and > which have the samemeaning as before. A declaration is valid from the point of introduction untilthe end of the program unless overruled by a new declaration.+! O � ! O : : :[a� z]+! AO R O ! D O LO ! D O > O;! DE O E ! E A! E (E)! ED ! C E ! CC: P ! P �! P4.6.1 Global �lterA �lter for these programs selects those trees that have expression trees that donot violate the priority declarations earlier in the tree. The �rst method checks84



Prolog Operators / 4.6a program tree by traversing it from left to right, checking each expression treewith the priority information it has collected earlier in the traversal.De�nition 4.6.1 The predicate ER is de�ned as follows on program treesER([e:p]) () ER(e) _ ER(p)ER([d:p]) () ER[fdg(p)and for expression treesER([[e1 � e2]
 e3])( �R
 _ 
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The �lter for sets of P -trees over Gprolog can now be de�ned as F(�) = ft 2� j :E;(t)g 24.6.2 Local �lterAnother approach to selecting the right tree is by means of a local �lter. Thebasic idea of the �lter as de�ned below is that it infers the priority constraintsposed by each subtree of a tree. If these constraints form an inconsistent state-ment the subtree can never be correct with respect to any priority declaration.De�nition 4.6.2 The function pr maps trees in T (Gprolog) to �rst-order logicalformulas.pr([x! A]) = 8
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) ^ pr(e2)pr([e:p! P ]) = pr(e) ^ pr(p)pr([d:p! P ]) = d ^ pr(p)where op([x ! A]) = x and op([e1 � e2 ! E]) = �. The �lter can now bede�ned as Fpr(�) = ft 2 � j 9R : R j= pr(t)g 2Example 4.6.3 Sentence: � > +:a+ b � c: Trees:pr((� > +):((a+ b) � c):) = � > + ^+ > � = ?pr((� > +):(a+ (b � c)):) = � > + 2Example 4.6.4 Sentence: a+ b � c+ d: Trees:pr(((a+ b) � (c+ d))) = + > �pr((((a+ b) � c) + d)) = + L �pr(((a+ (b � c)) + d)) = (� > + _ �R +) ^+ L+pr((a+ ((b � c) + d))) = � > + ^+R+pr((a+ (b � (c+ d)))) = + R � 285



4 / disambiguation filtersIt is clear that this disambiguation method can not be applied at parser-generation time, but can very well be applied at parse-time.Aasa (1991, 1992) describes a disambiguation method for a limited class ofcontext-free grammars with dist�x operators based on a predicate on trees. This�lter is used to transform context-free grammars into disambiguated context-free grammars which generate the same trees.4.7 O�side RuleSeveral languages use the o�side rule to enforce uniform indentation and atthe same time reduce the number of keywords for separating constructs. Therule was �rst formulated by Landin (1966) and later (but shorter) by Richards(1984) as:None of an expression's tokens can lie to the left of its �rst token.In the following de�nition disambiguation by the o�side rule is de�ned by meansof a �lter.De�nition 4.7.1 (O�side) Associate with each occurrence of a terminal X 2VT its horizontal position h(X). Associate with each tree t = [t1 : : : tn ! A]its horizontal position h(t) = h(t1) and its minimal horizontal position hm(t) =minni=1(hm(ti)). A tree t is o�side (o(t)) if hm(t) < h(t). The grammar G=Fois disambiguated by the o�side rule. 24.8 Pattern Matching FiltersIn x4.5 we saw how priorities can be de�ned in terms of a unary predicatethat checks every node of a tree for a priority violation, i.e., if it matches somepattern that indicates a priority conict. This method is part of a larger classof disambiguation methods based on pattern matching. This class is attractivesince it is weak enough to implement e�ciently and it is strong enough to resolveambiguities in the area of precedence and associativity in an elegant way.De�nition 4.8.1 (Matching) A tree t matches a tree (pattern) q, if q � t:X � XA � [t� ! A][q1 : : : qn ! A] � [t1 : : : tn ! A]( q1 � t1; : : : ; qn � tnIf Q is a set of patterns then Q � t if there is some q 2 Q such that q � t. 2This de�nition can easily be extended such that � yields a substitution ofthe variables|indexed nonterminals{in the pattern, if patterns are linear. Wewill write � = q � t to indicate that � is a substitution such that q� = t.86



Pattern Matching Filters / 4.84.8.1 Subtree ExclusionThorup (1994b) describes a disambiguation method that consists in specifyinga set of tree patterns that are excluded from trees produced by a parser. Interms of �lters this works according to the following de�nition.De�nition 4.8.2 (Subtree Exclusion) Given a set Q of tree patterns, thesubtree exclusion �lter FQ is de�ned byFQ(�) = ft 2 � j :9s 2 sub(t) : Q � sg 2Disambiguation by priority conicts as de�ned in x4.5 can be de�ned in termsof subtree exclusion by translating the rules in a priority declaration R to a setof tree patterns QR that characterize trees with priority conicts. For example,if � > + 2 R, then the pattern [[E + E] � E] is illegal and therefore the tree[[a+ b] � c] is illegal.De�nition 4.8.3 (Priority Conict Patterns) A priority declaration Pr(G)derives a pattern set QPr(G) as follows:�B ! A L [ N � ! B 2 Pr(G)[�[� ! B]! A] 2 QPr(G)B�! A R [ N � ! B 2 Pr(G)[[� ! B]�! A] 2 QPr(G)�B� ! A >  ! B 2 Pr(G)[�[ ! B]� ! A] 2 QPr(G)Proposition 4.8.4 A tree has a root priority conict (De�nition 4.5.2) accord-ing to a priority declaration Pr(G) i� it matches one of the patterns in QPr(G),i.e., EPr(G)(t) () QPr(G) � t 2Subtree exclusion is strictly more expressive than priorities as a disambigua-tion mechanism: Proposition 4.8.4 proves that each priority declaration can beexpressed as a subtree exclusion �lter. Example 4.5.13 showed the grammar withgeneric syntax for in�x operators EOE ! E that could not be disambiguatedwith priorities. By excluding patterns like[E [� ! O] [E [+! O] E ! E]! E]the intended disambiguation can be achieved. This higher expressivity of subtreeexclusion is due to the fact that arbitrarily deep patterns can be speci�ed, whilepriorities provide �xed pattern templates|corresponding to associativity andprecedence|that are always 2 levels deep. Like priorities, subtree exclusion isnot expressive enough for a correct disambiguation of the dangling-else grammarin Example 4.5.12. This is due to the fact that this problem can not be solvedwith a �nite number of �xed depth patterns. Below we will propose to solvethis problem by the use of higher-order patterns. 87



4 / disambiguation filters4.8.2 Rewrite RulesLaLonde and Rivieres (1981) describe a disambiguation method for operatorgrammars with productions of the form E � E ! E. It works by translat-ing a grammar to an unambiguous right-associative context-free grammar withproductions T O E ! E and � ! O and de�ning tree transformations thattransform a tree over the unambiguous grammar to the correct tree over theambiguous grammar. Such a transformed grammar is implemented by a de-terministic parser that yields right-associative trees that are transformed afterparsing to the correct form by generic rules such as[[E1 [�! O] E2 ! E] [
 ! O] E3 ! E]) [E1 [� ! O] [E2 [
 ! O] E3 ! E]! E]; if 
 > �The transformation system is specialized for operator precedence information. Ageneralization of this technique is achieved by applying an arbitrary tree rewritesystem instead of operator transformations. For instance, to express that � > +,the rewrite system contains a rule[[E1 +E2 ! E] �E3 ! E]) [E1 + [E2 �E3 ! E]! E]Thorup (1994a) uses this idea in a method for the disambiguation of context-freegrammars by term-rewrite systems:De�nition 4.8.5 (Term Rewrite System) A term rewrite system (TRS) isa set E of tree pairs (s; t). A tree t rewrites in one step to a tree s in a TRS E(t!E s) if t = C[t0], s = C[s0] and there is a pair (q; p) 2 E such that � = q � t0and p� � s0. A tree t rewrites to a tree s if t!+E s. A set of rewrite rules E isyield preserving if yield(t) = yield(s) for each t! s in E. 2De�nition 4.8.6 (Rewrite Filter) If E is a yield preserving TRS, then FEis the �lter de�ned byFE(�) = ft 2 � j :9s 2 � : t!+E sg 2Proposition 4.8.7 Rewrite �lters FE for yield preserving E are local. 2Proof. Assume t 2 F(�[�]) and t 62 �[F(�)]. The latter implies that t = C[t0]and 9s0 2 � : t0 !+ s0 but then C[t0] ! +C[s0] and therefore t 62 F(�[�]),which contradicts the �rst assumption. 2The grammar G=FE is not implemented by post-parse �ltering, but the TRS isused for the solution of conicts in LR parse tables. The input for the algorithmis a context-free grammar G and a TRS E, the output is a complete, linear timeparser � and a TRS E0 = E [ E00 if such a pair exists, indication of failureotherwise. The parser � is a deterministic parser for L(G), that produces foreach sentence w a tree t in normal form with respect to E0, i.e., there is no trees such that t!+E0 s.88



Pattern Matching Filters / 4.8Disambiguating rewrite rules can be derived from semantic equations s = tthat express that two trees (patterns) s and t have the same meaning. If theyields of the left-hand side and right-hand side of such an equation are thesame, i.e., yield(s) = yield(t), a disambiguation rule choosing either one can bederived. This is especially appropriate for associative operators as in a�(b
c) =(a � b) 
 c. Thorup (1994a) assumes s = t if yield(s) = yield(t) and neithers!+ t nor t!+ s.4.8.3 Higher-Order PatternsSeveral disambiguation problems can not be described by �xed-depth patterns.We propose a language of higher-order patterns that adds expressive power topattern matching. It allows the correct speci�cation of the disambiguation ofthe dangling-else grammar from Example 4.5.12.De�nition 4.8.8 (Higher-Order Pattern) A higher-order tree pattern is anelement from the set H = T [ f :�; :�; :; : : : g [ (VN �H�)We write (A !� q1 : : : qn) for an element of VN �H�. A tree t matches with ahigher order pattern q if they are in the relation q 3 t:X 3 XA 3 A! �(t�)[q� ! A] 3 [t� ! A]( 8X 2 � : qX 3 tX[~q !� A] 3 [~t! A]( ~q 3 ~t:� ~q 3 ~t1~t2 ( ~q 3 ~t2q~q 3 t1~t2 ( q 3 t1 ^ ~q 3 ~t2~q 3 ~t0[~t1 ! A]~t2 ( ~q 3 ~t0~t1~t2 2Example 4.8.9 The dangling-else grammar can now be disambiguated by ex-cluding all subtrees that match with[i [ :� i S !� S] e S ! S]This pattern matches any tree of the formi e� iand thus describes all situations where an if-then appears before an else in astring. 289



4 / disambiguation filters4.9 DiscussionMany disambiguation methods for context-free grammars for programming lan-guages have been proposed since the early seventies. We can only briey sketchhere some of the related work.4.9.1 ImplementationFilters are an attractive method for the disambiguation of context-free grammarsbecause they specify the interpretation of a sentence in a logical manner and canbe implemented as post-parse �lter. An implementation consisting of a standardgeneralized parser in combination with a post-parse �lter allows fast prototypingof, and experimentation with, new disambiguation methods. However, deferring�ltering until parsing is complete can be expensive, because many trees builtduring parsing are thrown away afterwards. If a tree is rejected by a �lter afterparsing we can look at the parse steps that created it and see at which pointthe reason for rejection is introduced. These facts can be used to apply �lterrules during parsing or even when constructing the parser. In Chapter 5 aninvestigation is started into the derivation of e�cient parsers for context-freegrammars disambiguated with �lters.4.9.2 Operator DisambiguationDisambiguation of arithmetic operators is most commonly done by assigninga priority to each operator and to resolve conicting priorities during parsing.Traditionally, resolution of priority conicts and parsing are closely intertwined.Techniques for disambiguation have been applied in all phases discussed earlierin x4.2: grammar transformations, heuristic resolution of table conicts duringparser generation, rule based resolution, and post-parse �ltering of parse trees.Typical grammar transformations are the elimination of left/right recursion,and the coding of priority and associativity information in grammar rules.Aho et al. (1975) describe how parsers for ambiguous grammars of binary ex-pressions can be disambiguated with associativity and precedence declarations.This technique is applied by Johnson (1975) in the parser generator YACC.Earley (1975) describes a general scheme of precedence relations on context-free productions but only indicates how these could be used in static disam-biguation. Precedences in the de�nition of programming languages are alsodiscussed by Aasa (1991).User de�nable disambiguation is, for instance, used in Prolog by declaring theabsolute priority and associativity of operators.The order of the productions in a context-free grammar is used by Wharton(1976) (backtracking) and in YACC (Johnson, 1975) (resolution of shift/reduceconicts).Wharton (1976) de�nes a backtracking parser that is guided by an orderingon parse steps. This ensures a single parse for any sentence over any grammar.However, this resolution of ambiguity is not based on the language being de�ned90



Discussion / 4.9but on properties of the grammar productions.In SDF (Heering et al., 1989) a strict partial order on productions is usedas well as relative associativity of productions. This involves the detection ofpriority conicts, and a multiset ordering on trees.Thorup (1992, 1994a, 1994b) describes a technique of resolving LR and LLconicts based on a set of rewrite rules over parse trees. A consequence of thiswork is disambiguation by exclusion of a set of tree patterns from the set oflegal trees generated by a grammar.4.9.3 Semantic DisambiguationDisambiguation can also be combined with the further semantic processing ofparse trees. For instance, during static semantic checking (type checking) of atree disambiguation can be done using type information. Examples of this ap-proach based on attribute grammars can be found in Aasa (1992), Veldhuijzenvan Zanten (1988a) and Veldhuijzen van Zanten (1988b), Oude Luttighuis andSikkel (1992). Van den Brand (1992) describes parse time application of seman-tic predicates in a�x grammars (a variant of attribute grammars). His techniquecan also be applied to lexical disambiguation. Parr and Quong (1994) describea disambiguation method that mixes syntactic and semantic disambiguation inLL parsers. Static semantic restrictions on parse trees are also used by Bailesand Chorvat (1993) and McCrosky and Sailor (1993).An even stronger form of semantics-directed disambiguation can be foundin languages such as APL where execution and parsing of a program occursimultaneously and decisions regarding parsing can depend on the outcome ofexecution.4.9.4 FiltersThe notion of \�ltering" as a means of disambiguation has been proposed byother authors as well. A separation between disambiguation and parsing isdescribed by LaLonde and Rivieres (1981) where post-parse transformations ontrees are used to produce the right parse tree. The idea is also described by Aasa(1992). In our approach, the treatment of �lters and their properties is moreabstract and completely independent from the underlying parsing techniques.In the framework of parsing schemata of Sikkel (1993) the notion of �lteringis used for describing re�nement relations between parsing algorithms.In several approaches the user is queried interactively to �lter ambiguities.An application of user-directed �ltering is described by Share (1988) where amodi�cation of YACC is used that reports parse conicts during parsing (insteadof during parser generation) and lets the user solve them. This technique isproposed as a solution of parsing documents in various ambiguous mark-uplanguages. Tomita (1985) also describes resolution of ambiguities by the user.The implementation of SDF (Heering et al. (1989)) uses interactive dialogs to�lter ambiguities that could not be resolved by priorities.We did not propose a formalism for the speci�cation of �lters, since we mainly91



4 / disambiguation filtersexplored their semantics. x4.4.2, however, already suggests an approach to thespeci�cation of �lters using predicates or partial orders, thus abstracting fromthe application of these to sets of trees or to parse forests.4.9.5 UnparsingDisambiguation does not only play a role in parsing but also in unparsing,i.e., generating a string for some semantic value. If parse trees are mapped toabstract syntax trees and in this process bracket functions are considered asidentity functions (e.g., (x) and x are identi�ed at the level of abstract syn-tax trees), there is a problem during the reverse mapping of abstract syntaxtrees to parse trees since the right brackets may have to be reintroduced. Fordisambiguation methods based on precedence relations there is some body ofknowledge how to do this (e.g., Van den Brand and Visser, 1996). For arbitrary�lters new theory is needed, indicating how to unparse in this general case.Blikle (1989) describes the derivation of concrete syntax from abstract syntax.The equations that translate abstract to concrete syntax are very similar to thealgebraic speci�cation of pretty printers in Van den Brand and Visser (1996).Blikle's method breaks down when the syntax becomes too concrete, i.e., whenbrackets become optional. The disambiguation method of Thorup (1994a) isaimed at solving that problem. However, unparsing is not addressed by him.4.10 ConclusionsWe have presented �lters as a unifying framework for a large class of existing dis-ambiguation methods. This framework can handle all `logical' disambiguationmethods but is not suited for de�ning parser-speci�c methods. All disambigua-tion methods expressed as �lter can be implemented by post-parse �ltering.This provides a way of experimenting easily with new methods without havingto adapt a given parser generator. For us, the main merit of this framework isan increased understanding of the relationship between parsing and disambigua-tion. This insight may help during the design of new disambiguation methodsand their integration with syntax de�nition formalisms. In the next chapterwe explore techniques for deriving e�cient parsers from the combination of agrammar and a �lter. These initial ideas suggest that a separation of parsingand �ltering at the conceptual level does not exclude the use of e�cient parsingtechniques at the implementation level.
92



5A Case Study inOptimizing Parsing Schemataby Disambiguation FiltersDisambiguation methods for context-free grammars enable concise speci�cationof programming languages by ambiguous grammars. A disambiguation �lter isa function that selects a subset from a set of parse trees|the possible parsetrees for an ambiguous sentence. The framework of �lters provides a declarativedescription of disambiguation methods independent of parsing. Although �lterscan be implemented straightforwardly as functions that prune the parse forestproduced by some generalized parser, this can be too ine�cient for practicalapplications.In this chapter the optimization of parsing schemata, a framework for high-level description of parsing algorithms, by disambiguation �lters is consideredin order to �nd e�cient parsing algorithms for declaratively speci�ed disam-biguation methods. As a case study the optimization of the parsing schemaof Earley's parsing algorithm by two �lters is investigated. The main result isa technique for generation of e�cient LR-like parsers for ambiguous grammarsdisambiguated by means of priorities.5.1 IntroductionThe syntax of programming languages is conventionally described by context-free grammars. Although programming languages should be unambiguous, theyare often described by ambiguous grammars because these allow a more naturalformulation and yield better abstract syntax. For instance, consider the follow-ing grammars. The �rst, ambiguous grammar gives a clearer and more concisedescription of arithmetic expressions than the second unambiguous one."a" -> E "a" -> V T -> EE "+" E -> E E "+" T -> E V -> TE "*" E -> E T "*" V -> T"(" E ")" -> E "(" E ")" -> V 93



5 / optimizing parsing schemataTo obtain an unambiguous speci�cation of a language described by an am-biguous grammar it has to be disambiguated. For example, the �rst grammarabove can be disambiguated by associativity and priority rules that express thatE "*" E -> E has higher priority than E "+" E -> E and that both produc-tions are left associative. In the second grammar these disambiguation ruleshave been encoded in the grammar itself by means of extra non-terminals.In Chapter 4 we have set up a framework for speci�cation and comparisonof disambiguation methods. In this framework a disambiguation method is de-scribed as a �lter on sets of parse trees. A disambiguation �lter is interpreted byparsing sentences according to the ambiguous context-free grammar with somegeneralized parsing method, for instance Generalized LR parsing (Tomita, 1985,Rekers, 1992), and then prune the resulting parse forest with the �lter. Becausethis method of speci�cation of disambiguation is independent of parsing, a lan-guage de�nition can be understood without understanding a parsing algorithmand it can be implemented by any generalized parser.Although �lters provide a uniform model for the description of disambigua-tion, they are too ine�cient for several applications because all possible parsetrees for a sentence have to be built before the intended ones are selected. (Thenumber of possible parse trees for the �rst grammar above grows exponentiallywith the length of strings.) The optimization problem for �lters is to �nd ane�cient parser for the combination of a context-free grammar and a disambigua-tion �lter. The �lter can be used to prevent parse steps that lead to parse treesthat would be removed by the �lter after parsing. Parsing schemata, introducedby Sikkel (1993, 1994), are high-level descriptions of parsing algorithms that ab-stract from control- and data-structures and provide a suitable framework forthe study of the interaction between �lters and parsers.Since it is not clear how to solve the optimization problem in general, if thatis possible at all, an instance of the problem is studied in this chapter, i.e.,the optimization of the underlying parsing schema of Earley's (1970) parsingalgorithm by a �lter for disambiguation by priorities. This method, which is thedisambiguation method of the formalism SDF (Heering et al., 1989), interpretsa priority relation on context-free productions as two consecutive �lters. The�rst selects trees without a priority conict. The second selects trees that areminimal with respect to a multi-set ordering on trees induced by the priorityrelation.The main result of this chapter is a parsing schema for parsing with priorities.The schema speci�es a complete implementation of parsing modulo priorityconicts and a partial implementation for the multi-set order. The schemacan be implemented as an adaptation of any parser generator in the family ofLR parser generators. The resulting parsers yield parse trees without priorityconicts.The method of specifying a disambiguation method by a �lter and applying itto optimize the parsing schema of some parsing algorithm appears to be fertilesoil for growing new parsing algorithms from old ones.The rest of the chapter is structured as follows. In x5.2 some preliminarynotions are de�ned. In x5.3 disambiguation �lters are de�ned. In x5.4 parsing94



Preliminaries / 5.2schemata are informally introduced. In x5.5 priority rules and the notion ofpriority conict are de�ned and a parsing schema optimized for the priorityconict �lter is derived. In x5.6 the relation between Earley parsing and LRparsing is discussed and it is shown how optimization results can be translatedfrom the former to the latter. Furthermore, the results are extended to SLR(1)parsing. In x5.7 the multi-set �lter induced by a priority declaration is de�nedand a partial optimization of the Earley schema for this �lter is derived. Thetwo optimizations can be combined in a single schema, obtaining an e�cientimplementation of disambiguation with priorities.5.2 PreliminariesDe�nition 5.2.1 (Context-free Grammar) A context-free grammar G is atriple hVN ; VT ;Pi, where VN is a �nite set of nonterminal symbols, VT a �niteset of terminal symbols, V the set of symbols of G is VN [ VT , and P(G) =P � V � � VN a �nite set of productions. We write � ! A for a productionp = h�;Ai 2 P . 2The � ! A notation for productions (instead of the traditional A ! �) isa convention of the syntax de�nition formalism SDF to emphasize the use ofproductions as mix�x function declarations. The string rewrite relation !�Ginduced by a context-free grammar is therefore also reversed, from a generationrelation to a recognition relation. Repeated application of productions rewritesa string to its syntactic category. The statement w !� A means that the stringw can be reduced to the symbol A.Observe that we do not distinguish a start symbol from which sentences arederived. Each nonterminal in VN generates a set of phrases as is de�ned in thefollowing de�nition.De�nition 5.2.2 (Parse Trees) A context-free grammar G generates a familyof sets of parse trees T (G) = (T (G)(X) j X 2 V ), which contains the minimalsets T (G)(X) such that X 2 VX 2 T (G)(X)A1 : : : An ! A 2 P(G); t1 2 T (G)(A1); : : : ; tn 2 T (G)(An)[t1 : : : tn ! A] 2 T (G)(A)We will write t� for a list t1 : : : tn of trees where � is the list of symbolsX1 : : : Xnand ti 2 T (G)(Xi) for 1 � i � n. Correspondingly we will denote the set ofall lists of trees of type � as T (G)(�). Using this notation [t1 : : : tn ! A] canbe written as [t� ! A] and the concatenation of two lists of trees t� and t� iswritten as t�t� and yields a list of trees of type ��.The yield of a tree is the concatenation of its leaves. The language L(G) de-�ned by a grammar G is the family of sets of strings L(G)(A) = yield(T (G)(A)).295



5 / optimizing parsing schemataDe�nition 5.2.3 (Parsing) A parser is a function � that maps each stringw 2 V �T to a set of parse trees. A parser � accepts a string w if j�(w)j > 0.A parser � is deterministic if j�(w)j � 1 for all strings w. A parser for acontext-free grammar G that accepts exactly the sentences in L(G) is de�ned by�(G)(w) = ft 2 T (G)(A) j A 2 VN ; yield(t) = wg 2Example 5.2.4 As an example consider the ambiguous grammar"a" -> EE "+" E -> EE "*" E -> E"(" E ")" -> Efrom the introduction. According to this grammar the string a+ a � a has twoparses: �(G)(a+ a � a) = f[[[a! E] + [a! E]! E] � [a! E]! E][[a! E] + [[a! E] � [a! E]! E]! E]g 25.3 Disambiguation FiltersDe�nition 5.3.1 (Disambiguation Filter) A �lterF for a context-free gram-mar G is a function F : }(T ) ! }(T ) that maps sets of parse trees to sets ofparse trees, where F(�) � � for any � � T . The disambiguation of a context-free grammar G by a �lter F is denoted by G=F . The language L(G=F) generatedby G=F is the setL(G=F) = fw 2 V �T j 9� � T (G) : yield(�) = fwg ^ F(�) = �gThe interpretation of a string w by G=F is the set of trees F(�(G)(w)). A �lterF2 is also applicable to a disambiguated grammar G=F1, which is denoted by(G=F1)=F2 and is equivalent to G=(F2 � F1). 2Several properties and examples of �lters are discussed in Chapter 4. In x5.5 andx5.7 two examples of disambiguation �lters will be presented. The optimizationproblem for disambiguation �lters can be formulated as follows.De�nition 5.3.2 (Optimization by Filter) Given a context-free grammarG and a �lter F , a parser � is an optimization of �(G) if for any string wF(�(G)(w)) � �(w) � �(G)(w)We say that � approximates F ��(G). � is an optimal approximation if �(w) =F(�(G)(w)) for any w. 296



Parsing Schemata / 5.45.4 Parsing SchemataParsing schemata (Sikkel, 1993, 1997) abstract from the details of control- anddata-structures of full parsing algorithms by only considering the intermediateresults of parsing. A parsing system is a deduction system that speci�es howfrom a set of hypotheses (the tokens of a sentence) assertions (the intermediateparser states) can be derived according to a set of deduction rules for somecontext-free grammar. A parsing schema is a parsing system parameterized witha context-free grammar and a sentence. Below parsing schemata are introducedinformally by means of an example. A formal treatment can be found in Sikkel(1993, 1997). A related approach is the deductive parsing method of Shieberet al. (1995), where inference rules describing parsing algorithms much likeparsing schemata are interpreted as chart parsers in Prolog.De�nition 5.4.1 de�nes a parsing schema for Earley's (1970) parsing algo-rithm. Its speci�cation consists of an implicit de�nition of the set of hypothesesH , the de�nition of a set of items I and the de�nition of a set of deduction ruleschemata. For each string a1 : : : an the set of hypotheses H is the set containingthe items [ai; i � 1; i] for 1 � i � n. The set of items I is the domain of thededuction system, i.e., the items are the subject of deductions. According tothis de�nition, Earley items are of the form [� �� ! A; i; j], where �� ! A is aproduction of grammar G. The indices refer to positions in the string a1 : : : an.The intention of this de�nition is that an item [� �� ! A; i; j] can be derived ifai+1 : : : aj !�G � and a1 : : : aiA !�G B, for some non-terminal B and string ofsymbols . The deduction rules (I) through (C) describe how these items can bederived. Rule (I), the initialization rule, speci�es that the item [�� ! A; 0; 0]can always be derived. The predict rule (P), states that a production  ! Bcan be predicted at position j, if the item [� � B� ! A; i; j] has already beenderived. Finally, the rules (S) and (C) �nalize the recognition of a predicted andrecognized token or nonterminal|witnessed by the second premise|by shiftingthe � over the predicted symbol.De�nition 5.4.1 (Earley) Parsing schema for Earley's parsing algorithm (Ear-ley, 1970). �� ! A 2 P(G); 0 � i � j[� � � ! A; i; j] 2 I[��! A; 0; 0] (I)[� �B� ! A; i; j][� ! B; j; j] (P)[� � a� ! A; i; j]; [a; j; j + 1][�a � � ! A; i; j + 1] (S)[� �B� ! A; h; i]; [� ! B; i; j][�B � � ! A; h; j] (C)297



5 / optimizing parsing schemataA derivation according to a parsing schema is a sequence I0; : : : ; Im of itemssuch that for each i (0 � i � m) Ii 2 H or there is a J � fI0; : : : ; Ii�1g such thatJ ` Ii is (the instantiation of) a deduction rule. (Observe that if J is empty thiscorresponds to the case of using a rule without premises, such as the initializationrule.) A string w = a1 : : : an is in the language of context-free grammar G ifan item [�� ! A; 0; n] is derivable from the hypotheses corresponding to w inthe instantiation of the parsing schema in De�nition 5.4.1 with G. An item ofthe form [�� ! A; 0; n] is called a �nal item and signi�es that the entire stringis recognized as an A phrase. The predicate w `PG I expresses that there isa derivation I0; : : : ; Im = I of the item I from the hypotheses generated fromstring w in the instantiation of parsing schema P with grammar G.The schema in Example 5.4.1 only de�nes how strings can be recognized.Since disambiguation �lters are de�ned on sets of trees and not on items, a wayto relate items to trees is needed. De�nition De�nition 5.4.3 gives an extensionof the schema in De�nition 5.4.1 that describes how trees can be built as a resultof the deduction steps. First we need a de�nition of partial parse treeDe�nition 5.4.2 (Partial Parse Tree) A partial parse tree is a tree expres-sion of the form [t� ! A] where t� 2 T (G)(�) and such that the tree can be com-pleted to a normal tree by adding a list of trees t� , i.e., [t�t� ! A] 2 T (G)(A).(which requires �� ! A 2 P(G):) 2The items in the schema have the form [��� ! A; i; j]) [t� ! A] and expressthat from position i to position j a phrase of type � has been recognized andthe partial parse tree [t� ! A] has been built as a result. The set of hypothesesH is changed such that token items are annotated with trees, i.e., for each tokenai in the string [ai; i � 1; i] ) ai 2 H . Note how the shift and complete rulesextend partial parse trees.De�nition 5.4.3 (Earley with Trees) Parsing schema for Earley's algorithmwith construction of parse trees.�� ! A 2 P(G); 0 � i � j; t� 2 T (G)(�)[� � � ! A; i; j]) [t� ! A] 2 I[��! A; 0; 0]) [! A] (I)[� �B� ! A; h; i]) [t� ! A][� ! B; i; i]) [! B] (P)[� � a� ! A; h; i]) [t� ! A]; [a; i; i+ 1]) a[�a � � ! A; h; i+ 1]) [t�a! A] (S)[� �B� ! A; h; i]) [t� ! A]; [� ! B; i; j]) tB[�B � � ! A; h; j]) [t�tB ! A] (C)2Figure 5.1 shows the derivation of a parse tree for the string a + a withthe grammar from Example 5.2.4. The following theorem states that parsing98



Priority Conicts / 5.5[a; 0; 1] ) a[+; 1; 2] ) +[a; 2; 3] ) a[�E +E ! E; 0; 0] ) [! E][�a! E; 0; 0] ) [! E][a� ! E; 0; 1] ) [a! E][E �+E ! E; 0; 1] ) [[a! E]! E][E + �E ! E; 0; 2] ) [[a! E]+! E][�a! E; 2; 2] ) [! E][a� ! E; 2; 3] ) [a! E][E +E� ! E; 0; 3] ) [[a! E] + [a! E]! E]Figure 5.1: Derivation with the parsing schema in De�nition 5.4.3 and thegrammar from Example 5.2.4.as de�ned in De�nition 5.2.3 and derivation with Earley's parsing schema inDe�nition 5.4.3 are equivalent.Theorem 5.4.4 (Correctness) Parsing schema Earley with trees derives ex-actly the trees produced by a parser, i.e., ft j A 2 VN ; w `5:4:3G [�� ! A; 0; n])tg = �(G)(w)The following proposition states that the decoration of items with partialparse trees makes no di�erence to what can be derived. Items in a parsingschema can be annotated with trees as long as they do not a�ect the deduction.Proposition 5.4.5 Parsing schema Earley with trees preserves the derivationsof parsing schema Earley, i.e., w `5:4:1G [� � � ! A; i; j] () 9t� 2 T (G)(�) :w `5:4:3G [� � � ! A; i; j]) [t� ! A]The optimization problem can now be rephrased as:De�nition 5.4.6 (Optimizing Parsing Schemata) The optimization of aparsing schema P by a disambiguation �lter F constitutes in �nding a derivedparsing schema P 0 such thatF(�(G)(w)) � ft j w `P 0G I ) tg � ft j w `PG I ) tgwhere I is some �nal item. 25.5 Priority ConictsWe consider the optimization of parsing schema Earley by two disambiguation�lters that are used to interpret the priority disambiguation rules of the formal-ism SDF of Heering et al. (1989). This disambiguation method is also used in99



5 / optimizing parsing schematathe generalization of SDF to SDF2 presented in Part II. The subject of thissection is a �lter that removes trees with a priority conict. This �lter is sim-ilar to the conventional precedence and associativity �lter. The declaration ofpriority rules will also be used in the de�nition of the multi-set �lter in x5.7.De�nition 5.5.1 (Priority Declaration) A priority declaration Pr(G) for acontext-free grammar G is a tuple hL;R;N; >i, where � � P � P for � 2fL;R;N; >g, such that L, R and N are symmetric and > is irreexive andtransitive. 2The relations L, R and N declare left-, right- and non-associativity, respec-tively, between productions. The relation > declares priority between produc-tions. A tree with signature p1 can not be a child of a tree with signature p2if p2 > p1. The syntax of priority declarations used here is similar to that inEarley (1975). In SDF (Heering et al., 1989) a formalism with the same un-derlying structure but with a less Spartan and more concise syntax is used. InSDF one writes left for L, right for R and non-assoc for N. We will use bothnotations.De�nition 5.5.2 (Priority Conict) The set conicts(G) generated by thepriority declaration of a grammar G is the smallest set of partial trees of theform [�[� ! B] ! A] de�ned by the following rules.�B ! A > � ! B 2 Pr(G)[�[� ! B] ! A] 2 conicts(G) 6= �; � ! B (right [ non-assoc) B ! A 2 Pr(G)[[� ! B] ! A] 2 conicts(G)� 6= �; � ! B (left [ non-assoc) �B ! A 2 Pr(G)[�[� ! B]! A] 2 conicts(G)This set de�nes the patterns of trees with a priority conict. 2Using the de�nition of priority conict we can de�ne a �lter on sets of parsetrees.De�nition 5.5.3 (Priority Conict Filter) A tree t has a root priority con-ict if its root matches one of the tree patterns in conicts(G). A tree t has apriority conict, if t has a subtree s that has a root priority conict. The �lterFPr is now de�ned by FPr(�) = ft 2 � j t has no priority conictg. The pairhG;Pri de�nes the disambiguated grammar G=FPr. 2Example 5.5.4 Consider the following grammar with priority declarationsyntax"a" -> EE "*" E -> E {left}E "+" E -> E {left}100



Priority Conicts / 5.5prioritiesE "*" E -> E >E "+" E -> EHere the attribute left of a production p abbreviates the declaration pLp. Thetree [[[a! E] + [a! E]! E] � [a! E]! E]has a priority conict over this grammar|it violates the �rst priority conditionsince multiplication has higher priority than addition. The tree[[a! E] + [[a! E] � [a! E]! E]! E]does not have a conict. These trees correspond to the (disambiguated) strings(a + a) � a and a + (a � a), respectively. The implication operator in logic isan example of a right associative operator: a ! a ! a should be read asa! (a! a). Non-associativity can be used to exclude unbracketed nested useof the equality operator in expressions using the production E "=" E -> E. 2The priority conict �lter induced by a priority declaration can be used tooptimize the Earley parsing schema. By the following observation a more generaloptimization problem can be solved.De�nition 5.5.5 (Subtree Exclusion) A subtree exclusion �lter based on aset Q of excluded subtrees is de�ned byFQ(�) = ft 2 � j :t / Qgwhere t / Q (t is excluded by Q) if t has a subtree that matches one of thepatterns in Q. 2The optimized parsing schema should not derive trees that contain a subtreecontained in Q. As is shown in de�nition 5.4.3 such patterns are constructed inthe complete rule and predicted in the predict rule. The construction of treeswith priority conicts can be prevented by adding an extra condition to theserules. This leads to the following adaptation of the Earley parsing schema.De�nition 5.5.6 (Earley modulo Q) Parsing schema Earley modulo a setQ of parse trees of the form [�[ ! B]� ! A], which are excluded as subtrees.The set of items I and the deduction rules (H), (I) and (S) are copied unchangedfrom De�nition 5.4.3.[� �B� ! A; h; i]) [t� ! A]; [�[ ! B]� ! A] 62 Q[� ! B; i; i]) [! B] (P)[� �B� ! A; h; i]) [t� ! A]; [� ! B; i; j]) tB ;[�[ ! B]� ! A] 62 Q[�B � � ! A; h; j]) [t�tB ! A] (C)2101



5 / optimizing parsing schemataThe following theorem states that parsing schema in De�nition 5.5.6 is anoptimal approximation of the composition of a subtree exclusion �lter (withtrees of the form [�[ ! B]� ! A]) and a generalized parser.Theorem 5.5.7 (Correctness) Parsing schema Earley modulo Q derives ex-actly the trees produced by the composition of a parser and a subtree exclusion�lter for Q, i.e., ft 2 T (G)(A) j A 2 VN ; w `5:5:6G;Q [A ! ��; 0; n] ) tg =FQ(�(G)(w))This is proved using two lemmas. The soundness lemma asserts that nointermediate parse tree derived with the deduction rules has an excluded subtree(i.e., a priority conict). The completeness lemma states that every parse treewithout a priority conict can be derived. The completeness lemma is obtainedby reverting the implication of the soundness lemma. In these lemmata we usethe notion of a context tB [�] that represents a tree context of type B with onesubtree that is a hole �. The instantiation tB [tA] of a context tB [�] is the treeobtained by replacing the � subtree by the tree tA.Lemma 5.5.8 (Soundness) For all context-free grammars G, strings w =a1 : : : an 2 V �T , symbols A 2 VN and �; � 2 V �, natural numbers i � j 2 N,and trees t� 2 T (G)(�) such that �� ! A 2 P(G), and Q a set of parse treepatterns of the form [�[ ! B]� ! A] we have thatw `5:5:6G [� � � ! A; i; j]) [t� ! A]yield(tA = [t�� ! A]) = ai+1 : : : aj�;9tB [�] 2 T (G)(B) : :tB [tA] / Q ^ yield(tB [A]) = a1 : : : aiA�5.6 From Earley to LRThere is a close correspondence between Earley's algorithm and LR parsing(Knuth, 1965). In fact, parsing schema Earley in De�nition 5.4.1 can also beconsidered the underlying parsing schema of an LR(0) parser. The main di�er-ence between the algorithms is that in LR parsing the instantiation of the pars-ing schema with a grammar is compiled into a transition table. De�nition 5.6.1de�nes a parsing schema for `compiled' LR(0) parsing. The intermediate resultsof an LR parser, the LR states, are sets of LR items closed under prediction,de�ned by the function closure. The function goto computes the set of itemsthat results from a state by shifting the dot in the items over a symbol X . Theschema de�nes three deduction rules. Rule (I) generates the initial state consist-ing of the set of all items [�� ! A] predicting all productions of the grammar.Rule (Sh) obtains a new state from a state by shifting a terminal. Rule (Re)reduces a number of states to a new state upon the complete recognition of aproduction B1 : : : Bm ! B. It is clear that the function closure correspondsto the predict rule (P) in Earley, that (Sh) corresponds to (S) and that (Re)corresponds to (C). A goto-graph is a precomputation of the goto function.Figure 5.2 shows a goto-graph for the grammar of Example 5.2.4.102



From Earley to LR / 5.6De�nition 5.6.1 (LR(0) Parsing) LR items are Earley items without in-dices. The items used in LR parsing are sets of LR-items with a pair of indices.ILR = f[� � � ! A] j �� ! A 2 P(G)g I = f[�; i; j] j � � ILRgThe closure of a set of items � is the smallest set of items containing � andclosed under prediction, i.e., � � closure(�)[� �B� ! A];  ! B 2 P(G)[� ! B] 2 closure(�)Given a symbol X the goto function maps a set of items to the closure of theset obtained by shifting all items with X .goto(X;�) = closure(f[�X � � ! A] j [� �X� ! A] 2 �g)Given these functions an LR parser is de�ned1 by the following deduction rules.[f[��! A] j �! A 2 Gg; 0; 0] (I)[�; h; i]; [a; i; i+ 1][goto(a;�); h; i+ 1] (Sh)[�[��B�!A]; h; i]; [�[B1�:::Bk!B]1 ; i; i1]; : : : [�[B1:::Bk�!B]k ; i; ik][goto(B;�); h; ik] (Re)2In the same way that an LR parser is derived from the Earley schema an LRparser can be derived from the optimized parsing schema of De�nition 5.5.6 byadapting the closure and goto functions.De�nition 5.6.2 (LR(0) parsing modulo Q) Items are only predicted if theydo not lead to a conict.[� �B� ! A];  ! B 2 P(G); [�[ ! B]� ! A] 62 Q[� ! B] 2 closure(�)Given a production  ! B the goto function maps a set of items to the closureof the set obtained by shifting all items with  ! B for which that does notlead to a conict.goto( ! B;�) = closure(f[�B � � ! A] j [� �B� ! A] 2 �^ [�[ ! B]� ! A] 62 Qg) 2Note that the goto function has to be parameterized with the productionthat is recognized instead of with just the symbol. (For the (Sh) rule the oldgoto function is used.) Figure 5.3 shows the goto-graph for the disambiguatedgrammar from Example 5.5.4.1This de�nition gives the intermediate results of an LR parser, not its exact control ow.103



5 / optimizing parsing schemata
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Figure 5.2: LR(0) goto graph for the grammar of Example 5.2.4
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Figure 5.3: LR(0) goto graph for the grammar of Example 5.5.4.5.6.1 SLR(1) ParsingThe LR(0) goto graph in Figure 5.3 contains conicts that are easy to preventwith the SLR(1) (Simple LR(1)) extension of LR(0) parsing due to DeRemer(1971). The SLR algorithm is based on the observation that a reduction is only104



From Earley to LR / 5.6useful if the next symbol in the string can follow the symbol that is recognizedby the reduction, i.e., the right hand-side of the production that is reduced.This is expressed in the following adaptation of the LR(0) parsing schema ofDe�nition 5.6.1. The function �rst(�;	) yields the set of symbols that can starta phrase derived from a string of symbols � followed by a symbol from the set 	.The expression follow(B;	) denotes the set of symbols that can follow symbolB in a phrase that is followed by a symbol from the set 	. The reduce rulenow only applies if a production has been recognized and the next symbol inthe string can follow the right-hand side of the production.De�nition 5.6.3 (SLR(1) Parsing) The set of �rst symbols of a phrase gen-erated by a string � followed by an element from 	, is the smallest set �rst(�;	)such that �rst(�;	) = 	�rst(a�;	) = fag�rst(A�;	) = S�!A2P(G) �rst(��;	)The set of symbols that can follow a symbol B in a phrase generated by Gfollowed by a symbol from 	 is the smallest set such that�B� ! A 2 P(G)follow(B;	) � �rst(�; follow(A;	))The reduce rule of the schema in De�nition 5.6.1 is restricted by requiring thatthe next symbol in the string is an element of the follow set of B.[�[��B�!A]; h; i]; [�[B1�:::Bk!B]1 ; i; i1]; : : : ; [�[B1:::Bk�!B]k ; i; ik];[a; ik; ik + 1]; a 2 follow(B; f$g)[goto(B;�); h; ik] 2The SLR(1) schema can be adapted in the same way as the LR(0) schema toaccount for priority conicts (or subtree exclusion). However, the de�nition offollow above is too weak for this extended schema. For instance, in the grammarof Example 5.5.4, the token � is an element of the follow set of E. However,� can not follow an E if it is a E + E ! E, i.e., if a reduction is done withE+E ! E, no action for � is possible. The following parsing schema optimizesthe SLR(1) parsing schema by de�ning the follow set for a production insteadof for a symbol and adapting the reduce rule accordingly. Figure 5.4 shows theSLR(1) table for the grammar of Example 5.5.4.De�nition 5.6.4 (SLR(1) Parsing Modulo Q) This schema de�nes SLR(1)parsing modulo a set Q of parse trees of the form [�[� ! B] ! A] usingthe de�nition of the closure and goto functions from the parsing schema inDe�nition 5.6.2 and the de�nition of �rst from De�nition 5.6.3.�B ! A 2 P(G); [�[� ! B] ! A] 62 Qfollow(� ! B;	) � �rst(�; follow(�B ! A;	)) 105



5 / optimizing parsing schematastate a � + $ 1 2 3 40 s 1 3 3 4 21 r 1 r 1 r 13 s 8 s 5 acc4 s 5 acc5 s 1 7 77 s 8 r 3 r 38 s 1 99 r 2 r 2 r 2
(1) a ! E(2) E �E ! E(3) E +E ! E(4) E $ ! S(2) > (3)(2) L (2)(3) L (3)Figure 5.4: SLR(1) table for the grammar of example 5.5.4. s n denotes shiftto state n, r n denotes reduce with production n, acc denotes accept. The rightpart of the table contains the goto entries for the productions. This parse tablecorresponds to the goto graph of �gure 5.3.The reduce rule is adapted to the new de�nition of follow.[�[��B�!A]; h; i]; [�[B1�:::Bk!B]1 ; i; i1]; : : : ; [�[B1:::Bk�!B]k ; i; ik];[a; ik; ik + 1]; a 2 follow(B1 : : : Bk ! B; f$g)[goto(B1 : : : Bk ! B;�); h; ik] (Re)25.6.2 DiscussionConventional methods for disambiguating grammars that apply to LR parsingdisambiguate the grammar by solving conicts in an existing LR table. The clas-sical method of Aho et al. (1975) uses associativity and precedence informationof a limited form|a linear chain of binary operators that have non-overlappingoperator syntax|to solve shift/reduce conicts in LR tables. The method isbased on observations on how such conicts should be solved given precedenceinformation, without a real understanding of the cause of the conicts. Aasa(1991, 1992) describes �ltering of sets of parse trees by means of precedences.Thorup (1994a) describes a method that tries to �nd a consistent solution for allconicts in an LR table starting from, and producing a set of excluded subtrees.All these methods fail on grammars that are inherently non-LR(k), i.e., forwhich there is no complete solution of all conicts in any LR table for thegrammar. An example is the grammarsyntax -> LL [\ \t\n] -> L"a" -> EE L "*" L E -> E {left}E L "+" L E -> E {left}106



Multi-set Filter / 5.7prioritiesE L "*" L E -> E >E L "+" L E -> Ethat models arithmetic expressions with layout. The tokens of expressions canbe separated by any number of spaces, tabs or newlines, which requires un-bounded lookahead. Such grammars are the result of integrating the lexicalsyntax and context-free syntax of a language into a single grammar as is pro-posed in Chapter 3. Parsers for such grammars are called scannerless parsersbecause the tokens they read are the characters from the input �le. This gram-mar is disambiguated completely (it has no ambiguous sentences) with priori-ties, resulting in an LR table that contains some LR-conicts, but that does notproduce trees with priority conicts. In combination with a nondeterministicinterpreter, e.g., Tomita's generalized LR algorithm (Tomita, 1985), of the parsetables this gives an e�cient disambiguation method for languages on the borderof determinism.Thorup (1994b) describes a transformation on grammars based on a set ofexcluded subtrees to disambiguate a grammar. This method could be used togenerate conict free parse tables as far as possible. Because such a transforma-tion introduces new grammar symbols, more states and transitions are neededin the parse table than for the original grammar. Since the method de�nedabove also introduces some extra states, it would be interesting to compare theLR tables produced by both methods.5.7 Multi-set FilterThe multi-set ordering on parse trees induced by a priority declaration solvesambiguities not solvable by priority conicts. A certain class of ambiguitiessolved by the multi-set order does not need the full power of multi-sets, onlya small part of both trees are actually compared. Based on this observationan optimization of the Earley schema that partially implements the multi-set�lters can be de�ned.De�nition 5.7.1 (Multi-sets) A multi-set is a function M : P(G) ! N thatmaps productions to the number of their occurrences in the set. The unionM ]N of two multi-sets M and N is de�ned as (M ]N)(p) = M(p) +N(p).The empty multi-set is denoted by ;, i.e., ;(p) = 0 for any p. We write p 2 MforM(p) > 0. A multi-set with a �nite number of elements with a �nite numberof occurrences can be written as M = fp1; p1; : : : ; p2; : : : g, where M(p) is thenumber of occurrences of p in the list. A parse tree t is interpreted as a multi-set of productions by counting the number of times a production acts as thesignature of a subtree of t, where �! A is the signature of [t� ! A]. 2The following de�nition due to Jouannaud and Lescanne (1982) de�nes anordering on multi-sets. 107



5 / optimizing parsing schemataDe�nition 5.7.2 (Multi-set Order) Given some priority declaration Pr(G),the order �Pr(G) on multi-sets is de�ned asM �Pr(G) N ()M 6= N ^ 8y 2M :M(y) > N(y)) 9x 2 N : y >Pr(G) x ^M(x) < N(x) 2De�nition 5.7.3 (Multi-set Filter) Given a priority relation Pr(G), the multi-set �lter F�Pr(G) is de�ned byF�Pr(G) (�) = ft 2 � j :9s 2 � : s �Pr(G) tg 2The motivation for this �lter is that it prefers parse trees that are constructedwith the smallest possible number of productions of the highest possible priority.Example 5.7.4 Consider the grammarsyntax"n" -> NN "+" N -> NN -> R"r" -> RR "+" R -> Rthat describes the language of `naturals' and `reals' with an overloaded additionoperator. The sentence n+n can be parsed as [[n! N ]+[n! N ]! N ] and as[[[n! N ]! R]+[[n! N ]! R]! R]. This ambiguity can be solved, choosingeither the �rst or the second tree, by declaring one of the priority rulesN "+" N -> N > R "+" R -> Ror R "+" R -> R > N "+" N -> NNote that with the second priority rule, the production N + N ! N is onlyused as a parse tree in a context where no R is allowed. Therefore, the �rstpriority rule is assumed in further examples. 2The multi-set order is too strong for this kind of disambiguation. To solve theambiguity there is no need to compare the complete trees, as the multi-set orderdoes. Comparing the patterns [[N +N ! N ]! R] and [[N ! R]+ [N ! R]!R] is su�cient. The goto graph corresponding to the Earley parser for theexample grammar (Figure 5.5) shows that the partial phrase n+ causes a conict(in the left-most state at the bottom row) after completing the production [n!N ]. The parser can either shift with + or complete with the chain rule ofN ! R. However, only after having seen what follows the + a decision can bemade. In the following adaptation of the Earley parsing schema the cause ofthese early decision problems is solved by not predicting and completing chainproduction, but instead storing them in items.108



Multi-set Filter / 5.7
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Figure 5.5: Goto graph for the grammar of Example 5.7.4De�nition 5.7.5 (Earley modulo Chain Rules) Let VC be the set contain-ing all chain symbols [C ! B], where B and C are nonterminals in context-freegrammar G and B = C or C !G B1 !G � � � !G Bm !G B, (m � 0). Symbols[A ! A] and A are identi�ed. A production with chain symbols [C ! B] inits left-hand side is identi�able (member of grammar, priority relation) with aproduction where the chain symbols are replaced with their heads B. The (I)and (S) rules are as usual.�� ! A 2 G; j��j 6= 1 _ �� = a 2 VT ; 0 � i � j[� � � ! A; i; j] 2 I[� �B� ! A; h; i]; [C ! B] 2 VC[� ! C; i; i] (P)[� �B� ! A; h; i]; [� ! C; i; j]; j�j > 0[�[C ! B] � � ! A; h; j] (C1)[� �B ! A; h; i]; [� ! C; i; j];:[�0� ! A0; h; j]; �0 ! A0 > �B ! A[�[C ! B]� ! A; h; j] (C2)2The negative premise :[�� ! A; i; j] in combination with the condition A0 !�0 > A! �B is used in rule (C2) to express that an item [�[C ! B]� ! A; h; j]can be derived from [� � B ! A; h; i] and [� ! C; i; j] only if no item [�0� !A0; h; j] can be derived such that A0 ! �0 has higher priority than A! �B.With the introduction of negative premises we leave the domain of parsingschemata as de�ned in Sikkel (1993) and this deserves a more thorough investi-gation than is possible in the scope of this chapter. However, two points about109



5 / optimizing parsing schemata
�R+R ! R� r ! R�N +N! N� n ! N n n�! Nr r�! R

N �+N ! N[N ! R]�+R ! RN + N + �N ! N[N ! R] + �R! R�N +N ! N� R+R ! R� n ! N� r ! R N N +N� ! N[N ! R]+[N ! R]� ! RN �+N ! N[N ! R] �+R! R
[N ! R] +R�! RR �+R ! R

R �+R! RR R+ �R ! R� R+R! R�N +N! N� n ! N� r ! R+ R+R�! RR �+R! RR
R+R+ [N ! R]�! R[N ! R] �+R! RN �+N ! NN+

rn
nr

+
+

Figure 5.6: Goto graph for grammar of Example 5.7.4 corresponding to parsingschema in De�nition 5.7.5. The item [[N ! R] + [N ! R]� ! R] is present ifthe negative premise of rule (C2) is absent.this feature can be observed: (1) As used here the notion has a straightforwardimplementation in an LR-like compilation scheme: �rst construct the completeset of items and then choose the maximal items from it. (2) The priority rela-tion > on productions is irreexive by de�nition, which entails that rule (C2)has no instantiation of the form I1; I2;:I3 ` I3 that would make the schemainconsistent.Example 5.7.6 Figure 5.6 shows the goto graph for the grammar of Exam-ple 5.7.4 according to the parsing schema in De�nition 5.7.5. The shift/reduceconict between the items [N � +N ! N ] and [N� ! R] is changed into areduce/reduce conict between the items [N +N� ! N ] and [[N ! R] + [N !R]� ! R]. If the negative premise of rule (C2) is taken into account the item[[N ! R] + [N ! R]� ! R] can not be derived, and is not present in thegoto-graph. The conict is solved. 2The method does not help for grammars where the ambiguity is not causedby chain rules, for instance consider the following example due to Kamperman(1992)syntaxE E -> E"-" E -> EE "-" E -> Epriorities110



Conclusions / 5.8E E -> E >"-" E -> E >E "-" E -> EIt de�nes expressions formed by concatenation, pre�x minus and in�x minus.The methods developed in this chapter can be combined into a parsing schemathat handles both priority conicts and the partial implementation of multi-set�lters by adding the subset exclusion conditions to the (P), (C1) and (C2) rulesof the parsing schema in De�nition 5.7.5. As a bonus this combined parsingschema handles priority conicts modulo chain rules.5.8 ConclusionsIn this chapter two disambiguation methods speci�ed as a �lter on sets of parsetrees were considered. These �lters were used to optimize parsers for context-free grammars by adapting their underlying parsing schema.The �rst optimization uses priority conicts to prevent ambiguities. The re-sulting Earley parsers modulo priority conicts are guaranteed not to producetrees with priority conicts, even for grammars with overlapping operators,layout in productions or other problems that need unbounded lookahead. Incombination with a GLR interpreter of the parse tables this gives an e�cientdisambiguation method for languages with unbounded lookahead. The secondoptimization covers a subset of the ambiguities solved by multi-set �lters. To-gether these optimizations can be used in the generation of e�cient parsers fora large class of ambiguous context-free grammars disambiguated by means ofpriorities.Parsing schemata provide a high-level description of parsing algorithms thatis suitable for the derivation of new algorithms. The introduction of negativeitems was needed to express the optimization for the multiset �lter and needsmore research. This �rst experiment in implemenation of disambiguation meth-ods from formal speci�cations encourages research into a fuller optimization ofmultiset �lters and application of this approach to other disambiguation meth-ods.The deductive parsing approach of Shieber et al. (1995) and its implementa-tion in Prolog could be used to prototype such optimized schemata. Deductiveparsing consists in computing the closure of a set of axiom items under theinference rules of a schema, resulting in all items derivable for a sentence. Com-piling the inference rule of a schema into a parse table for a speci�c grammarincreases the e�ciency of an algorithm, since work is shifted from the parserinto the parser generator. It seems feasible to generalize the compilation ofEarley rules into LR tables to other schemata, thus obtaining a very declarativemethod for creating new parser generators.
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Part IIContext-Free Syntax De�nition
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6A Family of Syntax De�nitionFormalismsIn the next chapters we present the design and speci�cation of a family ofsyntax de�nition formalisms. The kernel of this family of formalisms is formedby context-free grammars. A number of orthogonal extensions to the kernelis de�ned. Many of these extensions are de�ned in terms of the primitives ofthe kernel by means of normalization functions. This provides a framework forconstructing new formalisms by adapting and extending previous ones.Included in the family are the following extensions of context-free grammars:uniform de�nition of lexical and context-free syntax, variables, disambiguationby priorities, follow restrictions and reject productions, a rich set of regular ex-pressions de�ned in terms of context-free productions, character classes, aliases,parameterized modules with hidden imports and renamings. The accumulationof these extensions is the syntax de�nition formalism SDF2.This chapter provides an introduction to SDF2 and gives an overview of thedesign and speci�cation of the family of formalisms.6.1 IntroductionNew programming, speci�cation and special purpose languages are being devel-oped continuously. Syntax de�nition formalisms play a crucial role in the designand implementation of new languages. Syntax de�nition formalisms also play arole embedded in other languages: regular expressions in edit operations, macrode�nitions for macro preprocessors, user de�nable in�x or dist�x operators inprogramming languages, grammars as signatures in algebraic speci�cation for-malisms, and documents that contain a description of their own syntax.The core of many syntax de�nition formalisms is formed by context-free gram-mars, which are widely used in computer science since their introduction byChomsky (1956). A context-free grammar is a set of string rewrite rules of theform �! A with � a string A1 : : :An of zero or more symbols and A a symbol.A string (a sequence of symbols) w is a member of the language described by agrammar G if it can be rewritten to the start symbol S, i.e., if there is a sequence115



6 / a family of syntax definition formalismsw = �0 ! �1 ! : : : ! �n = S such that each step has the form �i ! �i+1with �i = �1�2�3 and �i+1 = �1B�3 and G contains a production �2 ! B.Despite, or maybe due to, the simplicity of this basic structure there hasnever emerged a standard formalism for syntax de�nition. The Backus NaurForm (bnf), originally developed by Backus (1959) and Naur et al. (1960) forthe de�nition of the syntax of Algol, is a commonly used notation for context-free grammars, but it does not have the status of a standard and many variantsare in use. Several standard notations for syntax de�nition have been proposed(e.g., Wirth, 1977, Williams, 1982). None of these has been convincing, insteada number of similar or overlapping formalisms exist.The reason for this divergence is that a practical syntax de�nition formal-ism serves not only to de�ne languages, i.e, sets of strings. Syntax de�nitionsare also interpreted as recognizers that decide whether a string belongs to alanguage, as parsers that map strings to parse trees, as mappings from parsetrees to abstract syntax trees and as syntax directed editors. Plain context-freegrammars are not adequate for this purpose. To support the compact de�nitionof languages, formalisms can provide a variety of features as extensions to thebasic structure: character classes, regular expressions, disambiguation by asso-ciativity and priority declarations, reuse by modularization, parameterizationof language de�nitions, interfacing between the formalism and its environment,e.g., mapping to abstract syntax.Various extensions of context-free grammars have been developed for attach-ing semantics to grammars: Attribute grammars (Knuth, 1968) attach attributeevaluation rules to productions. The computation of the semantics of a parsetree consists in computing the values of all attributes. This computation isorthogonal to parsing. A�x grammars (Koster, 1971) and extended a�x gram-mars (Watt, 1977) are similar to attribute grammars, but predicates on a�x val-ues can play a role in disambiguation during parsing. De�nite clause grammars(Pereira and Warren, 1980) are based on the Horn clauses of logic programming.Parsing is performed by the SLD resolution evaluation mechanism. Semanticvalues are represented by means of terms and passed around using uni�cationand logic variables. Other approaches including algebraic speci�cation use aseparate formalism to de�ne the semantics.Traditionally, compiler construction is the main application area for syntaxde�nition formalisms. The most well-known is the pair lex/yacc. The for-malism lex (Lesk and Schmidt, 1986) is used to de�ne the lexical syntax of alanguage using regular expressions. According to the regular expressions a stringis analyzed and divided into tokens. In case more than one regular expressioncan be matched, a number of disambiguation rules such as prefer longest matchand prefer regular expressions appearing earlier in the �le. The `compiler com-piler' yacc (Johnson, 1975) is used for the de�nition of the context-free syntaxof a language. An LALR(1) parser generator translates grammars to C pro-grams if the grammar is LALR(1). Some conicts in the parse table caused byambiguous expression grammars can be solved by means of binary and unaryprecedences based on the ideas of Aho et al. (1975). Furthermore, the order ofproductions in the grammar is used to solve conicts. Trees for a string can be116



Introduction / 6.1constructed by calling C functions from the grammar productions.Recent formalisms are generally based on the same deterministic parsing tech-niques, but extend the expressivity and declarativeness of syntax de�nition byproviding mechanisms for building trees and coupling to other phases of com-pilation. Some examples are: The Cocktail compiler generator (Grosch, 1990)provides a BNF-like formalism with an LALR parser generator. The Eli system(Gray et al., 1992) is a collection of tools for developing all aspects of compilers.The syntax de�nition formalism is based on context-free grammars. Attributerules are added to de�ne semantics computations. The tree transformation lan-guage txl (Cordy and Carmichael, 1993) is a programming language for sourceto source transformations by means of transformation rules on parse trees. Thesyntax de�nition formalism of txl is based on context-free grammars extendedwith some regular operators. Lexical syntax is de�ned by means of prede�nedlexical notions and by means of regular expressions over character classes. pc-cts (Parr and Quong, 1994) is a formalism based on top-down LL(1) parsing.The problems of unbounded lookahead are dealt with by means of backtrackingand syntactic predicates that can be used to try out a variant before decidingwhich production to predict.An application domain derived from compiler construction is the area of pro-gramming environments. A programming environment is a collection of tools forinteractively developing and testing programs in some programming language.These tools are usually centered around an interactive syntax directed editor. Asyntax editor has knowledge of the language of the programs being edited andprovides support for checking the syntax of programs and for presenting andmanipulating the structure of programs. In order to rapidly process changes toa program, incremental parsing and incremental compilation are used. Syntaxde�nition formalisms developed for derivation of programming environmentsinclude the grammar formalism of the Synthesizer Generator (Reps and Teitel-baum, 1989), PSG (Bahlke and Snelting, 1986),Metal (Kahn et al., 1983) andSDF (Heering et al., 1989). The ASF+SDF Meta-Environment (Klint, 1993)is a programming environment for developing and generating programming en-vironments from algebraic speci�cations. To speed up the development cyclefor syntax de�nitions, incremental parser generation is used to only regeneratethose parts of the parser that have been a�ected by a change.Syntax de�nition in algebraic speci�cation takes the form of grammars asalgebraic signatures. The motivation here is to provide exible notation forfunctions and constructors in abstract data type speci�cations and less the de-scription of real programming languages. Therefore, the requirements on lexicalsyntax are not so strong. The correspondence of context-free grammars andmany-sorted signatures was �rst described by Rus (see Hatcher and Rus, 1976).Goguen et al. (1977) showed that this correspondence could be used to de�nethe semantics of programming languages. The correspondence was exploited ina number of algebraic speci�cation formalisms to provide exible, user-de�nablenotation for functions and constructors. The �rst formalism to incorporate thiswas OBJ (Futatsugi et al., 1985). Others are Cigale (Voisin, 1986), ASF+SDF(Heering et al., 1989, Bergstra et al., 1989a), the Meta Notation, used in action117



6 / a family of syntax definition formalismssemantics (Mosses, 1992), and Elan (Vittek, 1994).The combination of features that a formalism provides is, necessarily, ratherarbitrary and strongly inuenced by the expected application of de�nitions andthe environment in which generated tools have to operate. Although it is notdesirable to include all conceivable features in a formalism|some features cannot be combined with others and too many features results in an unmanage-able formalism|the similarities between di�erent formalisms can be exploitedby reusing parts of the design and implementation of old formalisms. However,formalisms are conventionally designed in a monolithic way, containing an in-tertwined mix of features, resulting in a formalism with a lack of orthogonalityand uniformity that is di�cult to implement, extend and use for other applica-tions than the originally intended ones. Syntax de�nition formalisms form noexception to this rule.Here we set out to design syntax de�nition formalisms in a modular way,as a family of formalisms each extending a small kernel with some feature forsyntax de�nition. This approach should result in more orthogonal and uni-form formalisms and should make it easier to (a) construct formalisms that usesome subset of a set of known features, (b) adapt formalisms for use in otherapplication areas, (c) implement tools for such formalisms and (d) design newformalisms that combine new features with existing ones.As a �rst step to accomplish this goal we design a concrete formalism witha set of features that is useful in many application areas, but in particular inthe application of grammars as signatures for algebraic speci�cations of pro-gramming languages. The result is the syntax de�nition formalism SDF2 thatis a generalization of SDF. It incorporates several concepts and techniques in-troduced by Heering et al. (1989) in a more orthogonal and uniform way andadds several new features.We use the algebraic speci�cation formalism ASF+SDF to formally specifythe family of syntax de�nition formalisms. For an introduction to ASF+SDFsee Van Deursen et al. (1996).In this chapter we outline the main features of SDF2 and examine the struc-ture and design principles of the speci�cation.6.2 An Overview of SDF2SDF2 is a syntax de�nition formalism based on context-free grammars, extendedwith character classes, sorts, literals, priorities, regular expressions, renamings,aliases and modules and combines the de�nition of lexical and context-free syn-tax into one formalism. The syntax de�nition in Figure 6.1 on page 121, takenfrom Visser (1997c), presents (the syntax of) a small untyped, �rst-order func-tional programming language, the data type environments and the evaluationfunction that interprets such functional programs using an instantiation of theenvironments data type. A program in this language might contain the follow-ing de�nition of a function map that applies a function F to all elements of alist L:118



An Overview of SDF2 / 6.2function map(F, L) isif(is-nil(L), nil(),cons(call(F, head(L)), map(F, tail(L))))We sketch the main features of SDF2 and use the syntax de�nition in Figure 6.1as running example.6.2.1 Context-free ProductionsThe basis of the formalism is formed by context-free productions. These arerules of the form �! A, where � is a list of symbols A1 : : :An (n � 0) and A asymbol. A production declares that a string of category A can be constructedby concatenating strings of the categories Ai. For instance, the productionFun "(" Terms ")" -> Termde�nes that a term can be constructed by means of a function symbol followedby a list of terms separated by commas between parentheses. Conventionally,context-free productions are written as A ! � or as A ::= �. In SDF2 pro-ductions are written the other way around to make the similarity to functiondeclarations more apparent. This is useful because SDF2 de�nitions are usedas signatures in algebraic speci�cations such that productions correspond to al-gebraic operators. For example, in a conventional signature one would declarethe evaluation function that computes the value of a term with respect to aprogram and some environment by means of the function declarationeval : Program # Term # Env -> TermThe productioneval "[[" Program "]]" "(" Term ")" "_" Env -> Termnot only de�nes a function with the same input types, but also the syntax forits applications, i.e., the program argument should be enclosed in double squarebrackets and the term argument should be enclosed in parentheses.6.2.2 Character ClasessSyntax de�nitions describe languages consisting of strings of characters, wherethe set of all characters can be encoded by a �nite set of consecutive naturalnumbers. Character Classes are compact descriptions of sets of characters andare typically used in the de�nition of lexical categories such as layout, identi�ersand numbers. The example contains the following character classes: the char-acters space, tab and newline [\ \t\n], all characters except newline ~[\n],all uppercase letters [A-Z], all lowercase letters [a-z], all letters and digits andthe hyphen character [a-zA-Z0-9\-]. 119



6 / a family of syntax definition formalisms6.2.3 LiteralsLiterals are strings of characters between double quotes that stand for ex-actly that string of characters. These are used to represent keywords|suchas "function" and "program"|and operators and other literal symbols|suchas "[", "|->", "|>", and "*". The de�nition of the function eval does notuse quotes for the function name. This is an exception to the general rule:identi�ers starting with a lowercase letter can also be used as literals.6.2.4 SortsThe basic nonterminal symbols used in productions are sorts, which are writtenas identi�ers starting with a capital letter. Sorts should be declared in a sortssection. The example de�nes the sorts Var, Fun, Term, etc.6.2.5 Regular ExpressionsMore complex nonterminal symbols can be formed by means of regular expres-sions that provide abbreviations for tupling ( ), iteration � and +, optionalconstructs ?, and alternatives j . For example, [a-zA-Z0-9\-]* denotes alist of zero or more characters from the set of letters, digits and hyphens,{Term ","}* declares a list of terms separated by commas and the expres-sion (Key "|->" Value)* denotes lists of zero or more tuples consisting of akey, the symbol "|->" and a value.6.2.6 AliasesSince such regular expressions can become quite tedious to type, it can be usefulto introduce a shorter name for such symbols. This can be done by introducinga symbol alias. For example the declarationaliases{Term ","}* -> Termsintroduces Terms as an alias for the regular expression {Term ","}*.6.2.7 PrioritiesSome productions that have a sensible type are syntactically ambiguous. Forinstance, the two productions for destructive and consistent environment updateEnv "|>" Env -> EnvEnv "*" Env -> Envare ambiguous with respect to themselves and to each other, e.g., the environ-ment expression Env |> Env * Env can be constructed as (Env |> Env) * Envor as Env |> (Env * Env). Associativity and priority declarations are a wayto resolve most ambiguities of this type. In the example, the ambiguity in theexpressions above is resolved by means of the priority declaration120



An Overview of SDF2 / 6.2module Functional-Programsexportssorts Var Fun Term FunDef Programaliases{Term ","}* -> Terms{Var ","}* -> Varslexical syntax[\ \t\n] -> LAYOUT"%%" ~[\n]* -> LAYOUT[A-Z][a-zA-Z0-9\-]* -> Var[a-z][a-zA-Z0-9\-]* -> Funcontext-free syntaxVar -> TermFun "(" Terms ")" -> Term"function" Fun "(" Vars ")" "is" Term -> FunDef"program" FunDef* -> Programmodule Environmentsexportssorts Key Value Envcontext-free syntax"[" (Key "|->" Value)* "]" -> EnvEnv "(" Key ")" -> ValueEnv "|>" Env -> Env {left}Env "*" Env -> Env {left}"(" Env ")" -> Env {bracket}context-free prioritiesEnv "|>" Env -> Env > Env "*" Env -> Envmodule Function-Evalimports Functional-ProgramsEnvironments [Key => Var Value => Term]exportscontext-free syntaxeval "[[" Program "]]" "(" Terms ")" "_" Env -> TermsFigure 6.1: SDF2 de�nition of the syntax of a small functional programminglanguage and its main evaluation function.Env "|>" Env -> Env > Env "*" Env -> Envthat declares "|>" to have higher priority than "*", which entails the (Env |>Env) * Env interpretation. The left attribute of a production declares thatthe operator is left-associative. 121



6 / a family of syntax definition formalisms6.2.8 Lexical and Context-free SyntaxThe phrases making up a string over a language are usually divided into lexicaltokens|the words of a sentence|and context-free phrases. The distinctionbetween tokens and phrases is that the tokens making up a phrase can beseparated by layout (whitespace and comments) while the characters comprisinga token cannot. In de�nitions this distinction is indicated by means of lexicaland context-free productions. For example, the lexical de�nition[a-z][a-zA-Z0-9\-]* -> Funindicates that function symbols consist of a number of adjacent characters start-ing with a lowercase letter, followed by zero or more letters, digits or hyphens.While the tokens in the term succ ( zero() ) can be separated by spaces, thecharacters in the token succ cannot. The layout that can occur between tokensshould also be speci�ed. The symbol LAYOUT is reserved for this purpose. Inthe example, layout is declared as[\ \t\n] -> LAYOUT"%%" ~[\n]* -> LAYOUTmeaning that spaces, tabs and newlines (also called whitespace) are layout andthat any su�x of a line starting with two percent signs is comment.6.2.9 ModulesGrammars can be divided in a number of modules such that parts of a grammarcan be reused in various language de�nitions. Modules consist of a list of exportsand hiddens sections. An import of a module M into a module N denotes theinclusion of the exported grammar of M into N . Thus the import of moduleTerms in module Functions means that the syntax of terms is included in thesyntax of programs. To prevent name clashes or to instantiate generic modules,renamings of symbols and productions can be applied to imported modules.For example, the module Function-Eval specifying the evaluation function,imports the generic module de�ning environments by means ofimports Environments [Key => Var Value => Term]renaming the sort Key to Var and the sort Value to Term, thus instantiating itfor use with the terms of the functional programming language.Modules can also be parameterized with a list of parameter symbols that canbe instantiated on import. For instance, module Environmentsmight also havebeen declared asmodule Environments[Key Value]declaring Key and Value as parameters. The importimports Environments[Var Term]122



Design / 6.3would then perform the instantiation.A complete syntax de�nition consists of a list of modules and a designatedtop module. The language de�ned by such a de�nition is the one de�ned by thegrammar associated to the top module. Of course, in a programming environ-ment for SDF2 this list does not have to reside in a single �le. More likely, eachmodule will be de�ned in one �le with the module name as the �le name.6.3 DesignThe next chapters give a formal algebraic speci�cation of the syntax and se-mantics of SDF2. The semantics of a syntax de�nition is characterized by thewell-formed trees it generates. A tree is associated with a sentence|its yield.The language associated to a de�nition is the set of sentences that are yields oftrees generated by the de�nition. A parser is a function that given a sentence,produces the tree (or set of trees) that have that sentence as yield. We do notdescribe parsing as part of the speci�cation of SDF2, but specify the outputrequired of a parser and allow any implementation that does so. Parsing forSDF2 grammars is described in Chapter 3.6.3.1 ModularizationThe formalism SDF2 is not designed monolithically, but modularized, as a familyof formalisms. The kernel of this family is formed by context-free grammars. Allfeatures are de�ned as independent extensions of the kernel. The combinationof the features forms SDF2. This setup makes it easier to construct a variantof the formalism by adding, removing or modifying features. Figure 6.2 depictsthe structure of the family by means of (an abstraction of) the import graph ofthe speci�cation.Furthermore, the speci�cation of SDF2 covers several aspects. The syntax ofthe formalism consists of the de�nition of the form of all its constructs. Projec-tion functions on these constructs are de�ned in order to extract informationfrom them. Normalization functions transform a syntax de�nition in order tosimplify it. The speci�cation of parse trees consists of several parts. A genericformat for the representation of structured data called ATerms (Van den Brandet al., 1997a) is used to represent parse trees. In order to use this format fora speci�c purpose, constructor names have to be de�ned. To represent gram-mar information in parse trees, several constructs of the formalism have to beencoded as ATerms. Given this framework, the well-formedness of a tree withrespect to a grammar can be de�ned. Furthermore, the yield of trees and theequality of trees are de�ned.For each feature a number of modules are de�ned that each de�ne an aspectof the formalism for that feature. The result is the matrix of modules listed inTable 6.1. The rows of the matrix contain the modules for one feature. Thecolumns of the matrix contain all modules for one aspect. Each module in thematrix has a name consisting of the name of the feature and the name of theaspect separated by -Sdf-. For instance module Kernel-Sdf-Syntax speci�es the123



6 / a family of syntax definition formalisms

Kernel

CharacterClassesSortsLiteralsPriorityBasicRegularModularAliasLabelsRestrictions

SDF2Grammar
Symbols

Figure 6.2: Import graph for the de�nition of SDF2.syntax of the constructs in the kernel. So for each feature X we have mod-ules X-Sdf-Syntax, X-Sdf-Projection, X-Sdf-Normalization, X-Sdf-Renamings,X-Sdf-Constructors, X-Sdf-ATerms, X-Sdf-Trees and X-Sdf-Equality. With theexception that if some feature does not change some aspect, the module is omit-ted.6.3.2 NormalizationAn important role in the design of SDF2 is played by the normalization function.In general, a normalization function de�nes a transformation on an expressionthat yields an expression in the same language, which uses less features. The124



Design / 6.3
Syntax Projection Normalization Renaming Constructors ATerms Trees EqualitySymbols 7.1 7.5.3Grammar 7.2 7.3.3 A.2.1 A.2.2Kernel 7.3.1 7.3.2 7.3.3 9.1.3 7.5.2 7.5.4 7.5.5 7.5.8Sorts 7.4.1 7.4.1 7.4.1 A.3 A.2.1 A.2.2CC 7.4.2 7.4.2 A.3 A.2.1 A.2.2 7.5.6Literals 7.4.3 7.4.3 A.3 A.2.1 A.2.2Priority 8.1.1 8.1.2 8.1.3 A.3 A.2.2 8.1.4Regular 8.2.1 8.2.2 A.3 A.2.1 A.2.2Basic 8.3.1 8.3.2 A.3 A.2.1 A.2.2 8.3.3Restrictions 8.4.1 8.4.2 8.4.3 A.3Renaming 9.1.1 9.1.2 9.1.3 9.1.4Alias 9.2.1 9.2.2 9.2.3 9.2.3Modular 9.3.1 9.3.2 9.3.3 9.3.4LabelSdf2 10.1.1 A.4 10.1.2 A.4 A.4 A.4 A.4 A.4Table 6.1: Modules of the family of syntax de�nition formalisms. The last rowcontains the collecting modules for SDF2. There are no collection modules forthe rows. The numbers refer to the sections presenting the modules.normalized expression has the same meaning as the original one. Thus, a nor-malization is a mapping from the language onto (a subset of) the same language.Ideally, a normalization function should be idempotent, i.e., yield the same re-sult when applied twice. An implementation for such a language only has toconsider the simpli�ed expressions, while users have a more expressive languageat their disposal.The requirement that normalization produces an expression in the languageitself entails that all constructs used for encodings should also be present in theoriginal language, i.e., the language should be closed under normalization. Forexample, one of the normalizations in this de�nition renames a symbol A intohA-LEXi if it occurs in the lexical syntax. Therefore, the constructor h -LEXiintroduced for the purpose of normalization also becomes a construct of thelanguage before normalization.A consideration in the de�nition of a normalization is whether two di�erentexpressions that are equivalent with respect to the semantics have the samenormal form. This can be useful when expressions have to be compared. This isfor example the case in the normalization of character classes. In Visser (1997b)a normalization of character classes to a unique normal forms is de�ned such thattwo character classes that represent the same set of characters are normalized125



6 / a family of syntax definition formalismsto the same character class expression. In general, however, the normalizationsin this chapter will not have this property. For instance, all permutations ofa list of productions are equivalent. Although such lists could be ordered byimposing an ordering on productions, this is not done here, since comparisonsof lists of productions are not needed. In such cases de�nitions can not usesyntactic equality to determine equivalence.Using this approach SDF2 is an expressive formalism that depends on a smallset of features, i.e., we have:SDF2 = context-free grammars+ priorities+ character-classes+ reject productions+ follow restrictionsFeatures that are provided in the formalism, but that are eliminated, i.e., ex-pressed using the features above are: literals, regular expressions, lexical andcontext-free syntax, variables, modules, renamings, and aliases. Furthermore,character classes, priority declarations and grammar composition are simpli�edconsiderably.The normalization of SDF2 is de�ned as a pipeline of normalizations, as isillustrated in Figure 6.3. This modularization of the de�nition of normalizationmakes it easy to de�ne an extension and express it in existing features using anew normalization function. The overall normalization is extended by addingthe new function to the normalization pipeline.6.4 OrganizationThe next chapters discuss the speci�cation of the family of syntax de�nition for-malisms that is the basis of SDF2. Chapter 7 de�nes context-free grammars, thebasic symbols sorts, character classes and literals and de�nes the well-formedparse trees characterized by a grammar. Chapter 8 de�nes disambiguation bymeans of priorities, regular expressions, lexical and context-free syntax and re-strictions for lexical disambiguation. Chapter 9 introduces renamings, aliasesand modules. Chapter 10 these extensions are combined in the formalism SDF2.The formalism is compared to SDF and a discussion of possible improvementsand extensions is given. Appendix A gives some auxiliary modules for the spec-i�cation of SDF2.
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Organization / 6.4
SDF2m[[ ]]( )b[[ ]]a[[ ]]r[[ ]]p[[ ]]l[[ ]]k[[ ]]topsorts[[ ]]( )
SDF2nf

Modular: extract completegrammar for selected moduleBasic: merge lexical andcontext-free syntaxAlias: expand aliasesRegular: de�ne regularexpressions by means ofextra productionsPriorities: normalizepriority declarationsLiterals: de�ne literals interms of character classesKernel: merge productions
CC: order character classesGrammars: order grammarsectionsSDF2: de�ne topsorts

normalize[[ ]]( ; )

Figure 6.3: The normalization of SDF2 de�nitions consists of a series of inde-pendent transformations. The last step is not performed by a transformationfunction, but by rewrite rules acting on the constructors themselves. 127
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7Context-Free GrammarsIn this chapter a context-free grammar formalism is de�ned. First an abstractframework of symbols and grammars is introduced. In this framework a gram-mar is interpreted by means of several predicates and functions that characterizethe trees and strings of symbols generated by a grammar. A well-formednesspredicate on parse trees characterizes the trees over a grammar. From the parsetrees over a grammar the strings of the language de�ned by the grammar arederived. Parse trees are represented in the annotated term format ATerms. Aninstance of this framework is set up with as kernel context-free productions.We introduce three kinds of basic symbols to be used in productions: sorts,character classes and literals.7.1 SymbolsSyntax de�nitions de�ne languages, i.e., sets of strings of symbols. A string ofsymbols is a list of zero or more symbols. The sort Symbol is declared withoutactually specifying any constructors for it. This entails that the sort is emptyat this point, but can be extended later on with constructors. We do not makea distinction between terminal and nonterminal symbols. Whether a symbol isa terminal or nonterminal symbol is determined by the interpretation and is not�xed syntactically. A symbol that plays the role of a terminal in one view can bea nonterminal in another view. An example is a literal that can be consideredas a terminal token or as a nonterminal that is de�ned in terms of characters.module Symbolsimports Layoutexportssorts Symbol Symbolscontext-free syntax\(" Symbol \)" ! Symbol fbracketgSymbol� ! Symbolsvariables[ABC][0-9 0]� ! Symbol[��][0-9 0]� ! Symbol�[��]\+"[0-9 0]� ! Symbol+ 129



7 / context-free grammars7.1.1 ProjectionThe function ++ concatenates strings and j j gives the length of a string. Thepredicate 2 decides list membership.module Symbols-Projectionimports Symbols7:1 Booleans Integersexportscontext-free syntaxSymbols \++" Symbols ! Symbols fassocg\j" Symbols \j" ! IntSymbol \2" Symbols ! BoolequationsConcatenation, length and membership of symbol lists.[1] � ++ � = � �[2] j j = 0[3] j A � j = j � j + 1[4] A 2 = ?[5] A 2 A � = >[6] A 2 B � = A 2 � when A 6= BThe concatenation function on sorts such as Symbols is needed because theconcatenation of the built-in associative lists (e.g., Symbol�) of ASF+SDF isnot inherited through the injection Symbol� ! Symbol. The injection is neededbecause list sorts cannot be output sorts of functions in ASF+SDF.7.1.2 SetsFrom lists of symbols we construct sets of symbols by means of the operationf g. Although this constructor does not remove double elements from the list, itsigni�es that the number of occurrences in the list does not matter. Operationson sets are union ([), di�erence (=) and membership (2). The union �1 [ �2adds only those elements of �1 to �2 that do not already occur in �2. If a setis constructed by means of union from singleton sets, the resulting set does notcontain double elements. Although this is not strictly necessary it is useful whenlater on something has to be done once for each symbol in some set.module Symbol-Setsimports Symbols-Projection7:1:1 Booleansexportssorts SymbolSetcontext-free syntax\f" Symbols \g" ! SymbolSetSymbolSet \[" SymbolSet ! SymbolSet frightgSymbolSet \=" SymbolSet ! SymbolSet fleftg\(" SymbolSet \)" ! SymbolSet fbracketgSymbol \2" SymbolSet ! Bool130



Grammars / 7.2prioritiesSymbolSet \="SymbolSet ! SymbolSet >SymbolSet \["SymbolSet ! SymbolSetvariables\�"[0-9 0]� ! SymbolSetequationsMembership[1] A 2 f�g = A 2 �Union[2] fg [ � = �[3] � [ fg = �[4] f�+ � +g [ � = f�+g [ f�+g [ �[5] fAg [ � = � when A 2 � = >[6] fAg [ f�g = fA �g otherwiseDi�erence[7] fg = � = fg[8] � = fg = �[9] f�+ � +g = � = f�+g = � [ f� +g = �[10] fAg = � = fg when A 2 � = >[11] fAg = � = fAg otherwise
7.2 GrammarsA syntax de�nition consists of a grammar. The only generic operations ongrammars that we de�ne at this point are an associative composition operationthat is used to combine grammars and the constant ; representing the emptygrammar.module Grammar-Syntaximports Layoutexportssorts Grammarcontext-free syntax\;" ! GrammarGrammar Grammar ! Grammar fassocg\(" Grammar \)" ! Grammar fbracketgvariables\G"[0-9 0]� ! Grammar 131



7 / context-free grammars7.2.1 InterpretationA grammar de�nes a set of strings of symbols, a language. We specify thelanguage derived by a grammar indirectly, via the trees it generates. Parse treeswill be represented by means of ATerms, a term format for the representationand exchange of structured data (Van den Brand et al., 1997a). The format willbe introduced in x7.5.1. In fact we will not just de�ne parse trees, but parseforests. A parse forest is a compact encoding of a collection of parse trees inwhich contexts are shared. A parse forest is used to represent all parse trees foran ambiguous sentence.The interpretation of a grammar is now given by two predicates and a func-tion. The predicate G ` T characterizes the terms T that are well-formed parseforests over grammar G. The function yield[[G]](T ) maps a parse tree T to astring of symbols. The predicate T _2 T 0 determines membership of a tree T ina forest T 0. The set of trees generated by a grammar is denoted by T [[G]].Given these functions we can derive the notion of the language generated bya grammar and the notion of a parser for a grammar. The language generatedby a grammar corresponds to the set of yields of the parse trees it generates. Inother words, a string of symbols � is an element of the language de�ned by agrammar G, if there exists a well-formed tree T over the grammar with � as itsyield. A parser �[[G]](�) is a function that maps a string � in L[[G]] to a parseforest T containing all well-formed trees such that their yield is �. The modulebelow summarizes these de�nitions. The equations de�ne the set of parse treesT [[G]], the language L[[G]] and the parser �[[G]]( ) in terms of well-formedness,yield and parse forest membership.module Grammar-Interpretationimports Grammar-Syntax7:2 Symbols7:1 Booleans ATerms7:5:1 Symbols-SetsATerm-Setsexportscontext-free syntaxGrammar \`" ATerm ! BoolATerm \ _2" ATerm ! Boolyield \[[" Grammar \]]" \(" ATerm \)" ! Symbols\T" \[[" Grammar \]]" ! ATermList\L" \[[" Grammar \]]" ! SymbolsSet\�" \[[" Grammar \]]" \(" Symbols \)" ! ATermequations[1] G ` T = >T 2 T[[G]] = >[2] G ` T = >, yield[[G]](T) = �� 2 L[[G]] = >[3] G ` T = >, yield[[G]](T) = �T _2 �[[G]](�) = >132



Context-Free Grammars (Kernel) / 7.3Note that these equations are non-constructive, i.e., do not provide decisionprocedures, but are merely a speci�cation of the required behaviour. (ModuleSymbols-Sets de�nes sets of strings of symbols in a similar way as sets of symbolsare de�ned in module Symbol-sets.)7.2.2 OverviewIn the rest of this chapter we will provide the speci�cations of well-formedness,yield and forest membership for a context-free grammar formalism. In x7.3we de�ne the syntax and normalization of context-free productions. In x7.4we de�ne basic symbols to be used in grammars: sorts, character classes andliterals. In x7.5 we de�ne the well-formed parse trees generated by a context-free grammar. In the next chapters this formalism is extended with a numberof features.An implementation of a parser is not speci�ed, but can be chosen such asto comply with this speci�cation. One possible implementation is discussed inChapter 3.
7.3 Context-Free Grammars (Kernel)7.3.1 SyntaxThe kernel of SDF2 is formed by context-free grammars. A context-free pro-duction is a structure � ! A, where � is a list of symbols and A a symbol. Acontext-free grammar is formed by a list of productions preceded by the keywordsyntax.Conventionally, since their introduction by Chomsky (1956), context-free pro-ductions are written as A ! � to emphasize the generative view of grammars.A grammar generates a string from a symbol, by repeatedly replacing somesymbol in a string by the symbols on the right-hand side of a production. Thereexist many variants of this `standard' notation, e.g., A ::= � in BNF (Backus,1959) and A : �1j : : : j�n; in yacc (Johnson, 1975).The unconventional � ! A notation for productions introduced by Heeringet al. (1989) emphasizes the functional view of productions when used in thecontext of algebraic speci�cation. A production coincides with the declaration ofthe name and type of a function. This notation is a uni�cation of the de�nitionof context-free productions with the declaration of mix�x functions in algebraicspeci�cation formalisms. For example, the declaration of the in�x additionoperator on natural numbers that is declared as Nat ::= Nat "+" Nat in BNF,is declared as op _ + _ : nat nat -> nat . in OBJ (Futatsugi et al., 1985)and as @ + @ : (nat nat) nat in Elan (Vittek, 1994). In SDF this becomesNat "+" Nat -> Nat. 133



7 / context-free grammarsAll these notations are equivalent in expressive power and could be used insteadof the current one. We could e�ortlessly de�ne a version of SDF that uses theA ::= � notation of bnf and de�ne its meaning by translation to the notationused here. Note, however, that this does not mean that other aspects of theseformalisms have the same expressive power nor that the parsing techniquescoupled to these formalisms all have the same power.Optionally, productions can have a list of attributes. An attribute is an anno-tation of a production that gives some extra syntactic or semantic informationabout the production. An example of an attribute that will be introduced inx8.1 is left that indicates left associativity of the production. Productions canhave any number of attributes. The kernel does not provide any attributes, butto be able to introduce attributes later on without having to introduce an extraconstructor for productions, the attribution of a production is de�ned here.module Kernel-Sdf-Syntaximports Symbols7:1 Grammar-Syntax7:2exportssorts Attribute Attributes Production Productionscontext-free syntax\f" fAttribute \;"g� \g" ! Attributes! AttributesSymbols \!" Symbol Attributes ! ProductionProduction� ! Productions\syntax" Productions ! Grammarvariables\attr"[0-9 0]� ! Attribute\attr"\�"[0-9 0]� ! fAttribute \;"g�\attr"\+"[0-9 0]� ! fAttribute \;"g+\$"[0-9 0]� ! Attributes[p][0-9 0]� ! Production[p]\�"[0-9 0]� ! Production�[p]\+"[0-9 0]� ! Production+
7.3.2 ProjectionWe de�ne concatenation functions for lists of productions and lists of attributes.The concatenation function for attributes removes duplicates. A productionwith an empty list of attributes is equal to a production without attributes.The projection function `P' gives the productions of a grammar, the function`P' gives the non-production parts of a grammar (to be de�ned later), and thefunction `PA' gives all productions de�ning a symbol A. The function `symbols'gives the set of all symbols in a grammar. The function `reachable' gives allproductions reachable from some set of symbols, i.e., used in the de�nition ofthose symbols.134



Context-Free Grammars (Kernel) / 7.3module Kernel-Sdf-Projectionimports Kernel-Sdf-Syntax7:3:1 Symbol-Sets7:1:2exportscontext-free syntaxProductions \++" Productions ! Productions frightgAttributes \++" Attributes ! Attributes frightgProduction \2" Productions ! BoolProductions \�" Productions ! BoolProduction \�=" Production ! Bool\P"(Grammar) ! Productions\P" \(" Grammar \)" ! Grammar\P" \ " Symbol \(" Productions \)" ! Productionssymbols(Productions) ! SymbolSetsymbols(Grammar) ! SymbolSetreachable(SymbolSet, SymbolSet, Productions) ! Productionsreachable(SymbolSet, Grammar) ! GrammarequationsConcatenation of lists of productions, membership and subset of a list of pro-ductions.[1] p�1 ++ p�2 = p�1 p�2[2] p 2 p�1 p p�2 = >[3] p 2 p � = ? otherwise[4] � p � = >[5] p p�1 � p�2 = p 2 p�2 ^ p�1 � p�2Concatenation of attribute lists. Attributes ocurring in both lists are addedonly once.[6] fattr+1 ; attr+2 g ++ fattr �g = fattr+1 g ++ fattr+2 g ++ fattr �g[7] fattrg ++ fattr�1; attr; attr�2g = fattr�1; attr; attr�2g[8] fattrg ++ fattr �g = fattr; attr �g otherwise[9] $ ++ = $[10] ++ $ = $[11] fg =The last equation states that an empty list of attributes fg is equal to noattributes.Two productions are similar if they are the same up to their attributes[12] � ! A $1 �= � ! A $2 = >[13] p1 �= p2 = ? otherwise 135



7 / context-free grammarsFunction `P' gives all productions of a grammar and function `P' gives allnon-syntax parts of a grammar. The function PA gives all productions de�ningthe symbol A.[14] P(syntax p �) = p �[15] P(G1 G2) = P(G1) ++ P(G2)[16] P(G) = otherwise[17] P(syntax p �) = ;[18] P(G1 G2) = P(G1) P(G2)[19] P(G) = G otherwise[20] PA() =[21] PA(� ! A $ p �) = � ! A $ ++ PA(p �)[22] PA(p p �) = PA(p �) otherwiseThe function `symbols' gives the set of symbols of a list of productions or agrammar.[23] symbols() = fg[24] symbols(� ! A $ p �) = f�g [ fAg [ symbols(p �)[25] symbols(syntax p �) = symbols(p �)[26] symbols(G1 G2) = symbols(G1) [ symbols(G2)[27] symbols(G) = fg otherwiseThe function `reachable' gives the subgrammar with those productions reachablefrom some set of symbols �. It is de�ned by applying the auxiliary `reachable'function to the productions of the grammar. Observe how the resulting grammaris a composition of the reachable productions and the non-production parts ofa grammar. The auxiliary function selects for each symbol in the original setthe productions for that symbol from the original grammar. This is appliedrecursively to the symbols used in the left-hand sides of those productions.The �rst set argument of the auxiliary function represents the symbols alreadyhandled. The second set contains the symbols for which the productions stillhave to be looked up.[28] reachable(�; G) = syntax reachable(fg; �; P(G)) P(G)[29] reachable(�; fg; p �) =[30] A 2 �1 = ?, PA(p�1) = p�2, symbols(p�2) = �1 = �2reachable(�1; fA �g; p�1) = p�2 ++ reachable(�1 [ fAg; �2 [ f�g; p�1)[31] reachable(�1; fA �g; p �) = reachable(�1; f�g; p �)otherwise
136



Context-Free Grammars (Kernel) / 7.37.3.3 NormalizationGrammar Normalization Composition of grammars is commutative and theempty grammar is a unit for grammar composition. Since commutativity can-not be expressed by means of a terminating rewrite system, the following modulenormalizes grammar compositions as a right associative list, where the gram-mars are ordered or merged as speci�ed by the operation 3. If G13G2 yields apair hG3;G4i this means that the composition G1G2 should be replaced by G3G4.The de�nition of 3 can either merge the two grammars into one, yielding thepair hG3; ;i, or exchange the grammars yielding hG2;G1i. The termination ofthis normalization depends on the property of 3 that a swap cannot be undone.The de�nition of 3 should be extended for each new grammar constructor. Forexample, the merging of the productions of two adjacent syntax sections is ex-pressed in the next module. The ordering could also be de�ned directly onthe grammar composition operator, but that would entail that two equationswould have to be written for each pair of constructors that have to be mergedor swapped, corresponding to the last two equations below.module Grammar-Normalizationimports Grammar-Syntax7:2exportssorts Grammar-Grammarcontext-free syntaxGrammar \3" Grammar ! Grammar-Grammar\<" Grammar \;" Grammar \>" ! Grammar-GrammarequationsThe empty grammar ; is a unit for composition and composition is associative.[1] ; G = G[2] G ; = G[3] G1 (G2 G3) = G1 G2 G3Subgrammars can be swapped as speci�ed by the function 3.[4] G1 G2 = G 01 G 02 when G1 3 G2 = hG 01, G 02i[5] G1 G2 G3 = G1 G 02 G 03 when G2 3 G3 = hG 02, G 03iContext-free Grammar Normalization The normalization function k[[ ]] for thekernel, merges productions with the same arguments and result symbols. Ifsuch productions have di�erent attributes, these are joined. This normalizationentails that two occurrences of the same production are identi�ed and do there-fore not cause an ambiguity. Consequently, other normalization functions cangenerate a production more than once, without changing the meaning of thegrammar. This strategy will be relevant later on when we introduce modular-ization of grammars. The identi�cation of productions means that a productionthat is declared in two or more di�erent modules is identi�ed when these mod-ules are imported in the same module. 137



7 / context-free grammarsmodule Kernel-Sdf-Normalizationimports Kernel-Sdf-Projection7:3:2 Grammar-Normalization7:3:3exportscontext-free syntax\k" \[[" Grammar \]]" ! Grammarmerge(Productions) ! ProductionsequationsAn empty list of productions is equivalent to an empty grammar and multiplesyntax sections are merged into one.[1] syntax = ;[2] syntax p�1 3 syntax p�2 = hsyntax p�1 p�2, ;iThe normalization function `k' merges productions with the same argumentsand result, using the auxiliary function `merge'.[3] k[[G]] = syntax merge(P(G)) P(G)[4] p1 = � ! A $1, p2 = � ! A $2, $1 ++ $2 = $3, p3 = � ! A $3merge(p�1 p1 p�2 p2 p�3) = merge(p�1 p3 p�2 p�3)[5] merge(p �) = p �otherwise7.4 Basic SymbolsThe kernel formalism presented in the previous section is a complete de�nitionof context-free grammars, except for the notation of symbols. In this section wepresent three extensions of the kernel that provide notation for basic symbolsneeded in syntax de�nition. Sorts represent the non-terminals of grammars, thecategories or domains that the grammar introduces. Character classes are usedto represent the terminals of grammars, the characters from which strings arebuilt. Literals are convenient abbreviations for �xed strings of characters. Withthese extensions we will have a complete notation for context-free grammars.The extensions in later sections will provide features to make this formalismmore expressive.7.4.1 SortsSyntax Sorts are the symbols that represent the basic domains or categoriesof a syntax de�nition. A sort identi�er is a word starting with an uppercaseletter followed by zero or more letters or digits. Hyphens can be used betweenthe �rst and last character. Sorts used in the productions of a grammar shouldbe declared in a separate sorts section that consists of the keyword `sort' and alist of symbols.138



Basic Symbols / 7.4module Sorts-Sdf-Syntaximports Kernel-Sdf-Syntax7:3:1exportssorts Sortlexical syntax[A-Z] ! Sort[A-Z][A-Za-z0-9n�]�[A-Za-z0-9] ! Sortcontext-free syntaxSort ! Symbol\sorts" Symbols ! Grammarvariables\S"[0-9 0]� ! SortNormalization Ordering of sorts and syntax sections (sorts are placed beforesyntax sections) and merging of sorts sections.module Sorts-Sdf-Normalizationimports Sorts-Sdf-Syntax7:4:1 Kernel-Sdf-Normalization7:3:3equations[1] sorts = ;[2] sorts � 3 sorts � = hsorts � �, ;i[3] syntax p � 3 sorts � = hsorts �, syntax p �iProjection The projection function `S' gives the list of sorts of a grammar.module Sorts-Sdf-Projectionimports Kernel-Sdf-Projection7:3:2 Sorts-Sdf-Syntax7:4:1exportscontext-free syntax\S"(Grammar) ! SymbolsequationsThe declared sorts of a grammar.[1] S(sorts �) = �[2] S(G1 G2) = S(G1) ++ S(G2)[3] S(G) = otherwise7.4.2 Character ClassesA character class is an expression such as, for example, [a-z\'] that denotes aset of characters, in this case the set of all lower case letters and a prime. Forexample, the following de�nition de�nes identi�ers as lists of characters startingwith a lowercase letter followed by zero or more lowercase letters or digits. 139



7 / context-free grammarssorts Idsyntax[a-z] -> IdId [a-z0-9] -> IdThe meaning of character classes could be de�ned in terms of productions andcharacters, e�ectively eliminating them from the formalism. For instance, thecharacter class [a-z] is completely de�ned by 26 productions of the form:[a] -> [a-z] [b] -> [a-z] ... [z] -> [a-z]However, this would cause an enormous increase in the number of productions.Therefore, the interpretation of character classes is not de�ned by translatingcharacter classes out of the language. This means that interpretation functionsshould be extended to character classes.We do not give the complete speci�cation of character classes and characterclass arithmethic. A full speci�cation of character classes can be found in Visser(1997b). The normalization de�ned there ensures that two classes that containthe same elements have the same normal form.Characters A character is a constant of the form nd1 : : : dn, where the di aredecimal digits, denoting the d1 : : : dn-th member of some �nite, linearly ordereduniverse of characters. Since specifying characters by their index in some encod-ing scheme is di�cult, we provide easier syntax for speci�cation of characters.Alphanumeric characters (letters and digits) can be speci�ed as themselves.Other visible characters in the ascii set can be speci�ed by escaping them us-ing a backslash, e.g., \( for left parenthesis, \- for a hyphen and \ (a backslashfollowed by a space) for space. The characters \t and \n represent tabs andnewlines. Finally, there are two special characters, \EOF and \TOP. \EOF is thecharacter used to indicate represent the end of a �le. \TOP is used to representthe largest character in the character universe.module Character-Syntaximports Layoutexportssorts Character NumChar ShortCharlexical syntax[n][0-9]+ ! NumChar[a-zA-Z0-9] ! ShortChar[n]�[n000-n037A-Za-mo-su-z0-9] ! ShortCharcontext-free syntaxNumChar ! CharacterShortChar ! Character\\TOP" ! Character\\EOF" ! Charactervariables\c"[0-9 0]� ! Character140



Basic Symbols / 7.4Character Classes A set of characters|a character class|is represented by alist of characters and character ranges between square brackets [ and ]. A listis constructed by an injection of characters into lists and by a right associativebinary concatenation operator on lists. Operations on character classes aredi�erence (=), intersection (^), union (_) and complement with respect to thecomplete character set, i.e., the characters in the range \0-\TOP, (�).module Character-Class-Syntaximports Character-Syntax7:4:2exportssorts CharRange CharRanges OptCharRanges CharClasscontext-free syntaxCharacter ! CharRangeCharacter \�" Character ! CharRangeCharRange ! CharRangesCharRanges CharRanges ! CharRanges frightg\(" CharRanges \)" ! CharRanges fbracketg! OptCharRangesCharRanges ! OptCharRanges\[" OptCharRanges \]" ! CharClass\�" CharClass ! CharClassCharClass \=" CharClass ! CharClass fleftgCharClass \^" CharClass ! CharClass fleftgCharClass \_" CharClass ! CharClass fleftg\(" CharClass \)" ! CharClass fbracketgpriorities\�"CharClass ! CharClass > CharClass \="CharClass ! CharClass> CharClass \^"CharClass ! CharClass >CharClass \_"CharClass ! CharClassvariables\cr"[0-9 0]� ! CharRange\cr"\�"[0-9 0]� ! OptCharRanges\cr"\+"[0-9 0]� ! CharRanges\cc"[0-9 0]� ! CharClassSyntax The kernel formalism is extended by adding character classes as sym-bols.module CC-Sdf-Syntaximports Character-Class-Syntax7:4:2 Kernel-Sdf-Syntax7:3:1exportscontext-free syntaxCharClass ! SymbolNormalization Character classes can be normalized to a unique normal formby ordering the ranges such that all characters are translated to their numeric141



7 / context-free grammarsequivalent and such that smaller characters are before larger characters and byfusing adjacent or overlapping ranges. For example, the class [A-Z0-9\%] hasnormal form [\37\48-\57\65-\90], because \37 is the numerical representa-tion of \%, \48-\57 of 0-9, \65-\90 of A-Z and these do not overlap and are or-dered. This normalization is speci�ed in module Character-Class-Normalizationthat can be found in Visser (1997b).module CC-Sdf-Normalizationimports CC-Sdf-Syntax7:4:2 Character-Class-NormalizationKernel-Sdf-Normalization7:3:37.4.3 LiteralsLiterals are abbreviations for �xed lists of characters. For example, the followingproduction uses literals to de�ne the keywords of a conditional statement."if" Exp "then" Stat "else" Stat -> StatThe meaning of literals is expressed by means of a production that speci�es thesequence of characters that makes up the literal. For instance, the meaning ofthe literals above is expressed by the productions[\105] [\102] -> "if"[\116] [\104] [\101] [\110] -> "then"[\101] [\108] [\115] [\101] -> "else"Literals that are identi�ers starting with a lowercase letter can be speci�edwithout the double quotes.Another useful abbreviation in this category is the de�nition of the syntax ofpre�x functions in the formadd(Nat, Nat) -> Natas an abbreviation of"add" "(" Nat "," Nat ")" -> NatSyntax Literals consist of a list of characters between double quotes. For thecomplete syntax of literals see xA.1. Literals that start with a lowercase let-ter can be written without quotes, hence the name `unquoted literals'. Pre�xfunctions can be declared by means of a special form of productions, where thedouble quotes for the parentheses and commas can be omitted.module Literals-Sdf-Syntaximports Kernel-Sdf-Syntax7:3:1 LiteralsA:1exportssorts UQLiterallexical syntax[a-z] ! UQLiteral[a-z][A-Za-z0-9n�]�[A-Za-z0-9] ! UQLiteral142



Basic Symbols / 7.4context-free syntaxUQLiteral ! LiteralLiteral ! SymbolLiteral \(" fSymbol \;"g� \)" \!" Symbol Attributes ! ProductionNormalization The normalization function `l' generates a de�ning productionfor each literal that is used as a symbol in one of the productions of the grammar.module Literals-Sdf-Normalizationimports Literals-Sdf-Syntax7:4:3 CC-Sdf-Normalization7:4:2exportscontext-free syntax\l[[" Grammar \]]" ! Grammarliterals(SymbolSet) ! Productionschars(Literal) ! Symbolssymbols(fSymbol \;"g�) ! Symbolsvariables\c"[0-9 0]� ! CHAR\c"\+"[0-9 0]� ! CHAR+\c"\�"[0-9 0]� ! CHAR�\L" ! Literal\"[0-9 0]� ! fSymbol \;"g�\"\+"[0-9 0]� ! fSymbol \;"g+equationsUnquoted literals are translated to quoted literals.[1] uqliteral(c+) = literal(""" c+ """)The function l[[ ]] generates a production for each literal symbol in the grammar.The production generated for a literal L has the form �! L, where � is a list ofsingleton character classes representing the characters of L. This list is producedby the function `chars'.[2] l[[G]] = G syntax literals(symbols(G))[3] literals(fLg) = chars(L) ! L[4] literals(fAg) = otherwise[5] literals(fg) =[6] literals(f�+ � +g) = literals(f�+g) ++ literals(f�+g)The function `chars' scans the characters in the literal string, translating themto short characters. These are then normalized to numeric character codesby character normalization. The third equation tries if the �rst character ofthe string is a short-character by normalizing it and then testing whether ithas reduced to a numeric character. This works for letters and digits. If thisfails, the fourth equation translates the character to an escaped short-character,which succeeds for all other characters. Characters that are already escaped arehandled by the second equation.[7] chars("") = 143



7 / context-free grammars[8] [shortchar("\" c)] = ccchars(literal(""" "\" c c � """)) = cc ++ chars(literal(""" c � """))[9] [shortchar(c)] = cc, cc = [numchar(c+)]chars(literal(""" c c � """)) = cc ++ chars(literal(""" c � """))[10] [shortchar("\" c)] = cc,� = chars(literal(""" c � """))chars(literal(""" c c � """)) = cc ++ � otherwisePre�x function productions are translated to normal productions by enclosingthe parentheses and commas in double quotes.[11] L() ! A $ = L "(" ++ symbols() ++ ")"! A $[12] symbols() =[13] symbols(A) = A[14] symbols( +1 ;  +2 ) = symbols( +1 ) ++ "," ++ symbols( +2 )7.5 Parse TreesNow we can de�ne the interpretation of grammars, that is, the well-formedtrees characterized by a grammar and the yield of those trees. The generalidea is that a context-free production p = A1 : : :An ! A0 constructs trees oftype A0 labeled with the production p and with a list of direct descendantsof type A1 : : :An. Such trees are represented by means of terms. The con-structor `appl' builds an application of a production p to a list of trees, i.e., ifT1 : : : Tn are trees of type A1 : : :An then appl(p; [T1; : : : ; Tn]) is a tree of typeA0. Parse forests are constructed by representing choice nodes or ambiguitynodes by means of the constructor `amb'. If T1 : : : Tn are all trees of the sametype A, then amb([T1; : : : ; Tn]) is an ambiguity node of type A.To formally de�ne this notion of trees we introduce the notion of terms. We�rst present the generic term format that is used to encode parse trees and theencoding of symbols and grammars in that format. With those tools in place,we de�ne the well-formedness rules in x7.5.5.7.5.1 Term FormatVan den Brand et al. (1997a) introduce the generic, annotated term formatATerms for the representation and exchange of structured data. The format isdesigned such that all kinds of data can be represented in a single, �xed format,with the purpose of exchanging such data between tools and providing genericoperations on these data. The de�nition of the format comes with an extensivelibrary of (higher-order) functions. We will use the ATerm format to representparse trees.144



Parse Trees / 7.5The syntax of ATerms is de�ned in module ATerms below. Terms are con-structed by means of four constructors, i.e., an ATerm is one of the following:| A constant (ACon), which is either an integer constant or a real numberconstant.| A list of terms (ATermList), which is either empty [], or a list of one ormore terms separated by commas between square brackets [T1; : : : ; Tn].The sort ATerms represents lists of one or more terms separated by com-mas.| A function symbol (AFun).| An application of a function symbol to a list of one or more terms separatedby commas.Furthermore, each of these constructors can be annotated by a list of one ormore terms between f and g (Ann). Literals are strings of characters betweendouble quotes. Integer constants are lists of digits and real constants are oatingpoint numbers with an optional exponent. For the syntax of literals, integersand reals see Van den Brand et al. (1997a).module ATermsimports LiteralsA:1 IntCon RealConexportssorts ATerms ATermList ACon AFun ATerm Anncontext-free syntaxATerm ! ATermsATerm \;" ATerms ! ATerms\[" \]" ! ATermList\[" ATerms \]" ! ATermListIntCon ! AConRealCon ! AConLiteral ! AFunACon ! ATermATermList ! ATermAFun ! ATermAFun \(" ATerms \)" ! ATerm\f" ATerms \g" ! AnnACon Ann ! ATermATermList Ann ! ATermAFun Ann ! ATermAFun \(" ATerms \)" Ann ! ATermvariables\Ts"[0-9 0]� ! ATerms\Tl"[0-9 0]� ! ATermList\ACon"[0-9 0]� ! ACon\AFun"[0-9 0]� ! AFun 145



7 / context-free grammars\T"[0-9 0]� ! ATerm\Ann"[0-9 0]� ! Ann7.5.2 Constructors for Parse TreesFunction symbols can be literals|strings of characters between double quotes|or identi�ers. Speci�cation of the identi�ers is not included in the ATerm for-mat. For each application of ATerms, an appropriate set of AFuns should bedeclared, with the requirement that they are restricted to names of the form[a-z][a-zA-Z0-9\-]*. For the representation of grammars, symbols, produc-tions and trees we de�ne the following function symbols.module Kernel-Sdf-Tree-Constructorsimports Grammar-Tree-ConstructorsA:2:1exportscontext-free syntax\prod" ! AFun\no-attrs" ! AFun\attrs" ! AFun\atr" ! AFun\syntax" ! AFun\appl" ! AFun\amb" ! AFunThe function symbols `appl' and `amb' will be used to represent parse trees.The others will be used in the encoding of grammar structures. Each extensionof the kernel that adds new constructors for symbols or grammars should alsoadd the corresponding ATerm function symbols. These are included in xA.2.7.5.3 ATerm EncodingNow we can encode symbols, grammars and productions as terms. For eachsort S a function aterm(S) ! ATerm is de�ned that encodes S-expressionsas ATerms. The encoding is injective. For each sort S a decoding functions(ATerm) ! S is de�ned such that s(aterm(s)) = s. Figure 7.1 illustrates theencoding of symbols and productions as ATerms.The following module de�nes the encoding of lists of symbols. The encodingof constructors for symbols is de�ned in a module for each extension of thekernel; see xA.2.module Symbols-ATermsimports Symbols-Projection7:1:1 ATerm-Listsexportscontext-free syntaxaterm(Symbol) ! ATermatermlist(Symbols) ! ATermListsymbol(ATerm) ! Symbolsymbols(ATermList) ! Symbols146
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Figure 7.1: Encoding symbols, productions and parse trees in a �xed termformat. Grammar domains such as Symbol and Production are mapped (thedotted arrows) onto subsets of the set of ATerms. Parse Trees are another subsetof ATerms formed by the constructor `appl' from a production and a list of trees,or by the constructor `amb' from a list of trees. 147



7 / context-free grammarsequationsEncoding lists of symbols.[1] atermlist(A) = [aterm(A)][2] atermlist(�) = [ ] when � =[3] atermlist(�+ � +) = atermlist(�+) ++ atermlist(� +)Decoding lists of symbols.[4] symbols([ ]) =[5] symbols([T]) = symbol(T)[6] symbols([T; Ts]) = symbol(T) ++ symbols([Ts])where we have the requirement that[7] symbol(aterm(A)) = AThe last equation requires of each future de�nition that it should be such thatthe decoding of an encoded symbol gives the original symbol.7.5.4 Encoding ProductionsThe following module de�nes the encoding of productions. As an example,consider the productionExp "+" Exp -> Exp {left}which is encoded asprod([sort("Exp"),lit("+"),sort("Exp")],sort("Exp"),attrs([atr("left")]))A production is represented by the function symbol `prod' and the attributesof the production are represented by `attrs'. Note that this makes use of theencoding of sort and literal symbols that is de�ned in xA.2.module Kernel-Sdf-ATermsimports Kernel-Sdf-Projection7:3:2 Kernel-Sdf-Tree-Constructors7:5:2Symbols-ATerms7:5:3 Grammar-ATermsA:2:2 ATerm-Listsexportscontext-free syntaxaterm(Production) ! ATermaterm(Attributes) ! ATermatermlist(fAttribute \;"g�) ! ATermListaterm(Attribute) ! ATermatermlist(Productions) ! ATermListproduction(ATerm) ! Productionattributes(ATerm) ! Attributes148



Parse Trees / 7.5attribute(ATerm) ! Attributeproductions(ATermList) ! ProductionsequationsEncoding productions and attributes.[1] aterm(� ! A $) = prod(atermlist(�); aterm(A); aterm($))[2] aterm() = no-attrs[3] aterm(fattr �g) = attrs(atermlist(attr �))[4] atermlist(attr �) = [ ] when fattr �g = fg[5] atermlist(attr) = [aterm(attr)][6] atermlist(attr+1 ; attr+2 ) = atermlist(attr+1 ) ++ atermlist(attr+2 )Decoding productions and attributes.[7] production(prod(Tl; T; T 0)) = symbols(Tl) ! symbol(T) attributes(T 0)[8] attributes(no-attrs) =[9] attributes(attrs(Tl)) = attributes(Tl)[10] attributes([ ]) = fg[11] attributes([T]) = fattribute(T)g[12] attributes([T; Ts]) = fattribute(T)g ++ attributes([Ts])where we have the requirement that[13] attribute(aterm(attr)) = attrEncoding grammars and lists of productions.[14] aterm(syntax p �) = syntax(atermlist(p �))[15] atermlist(p) = [aterm(p)][16] atermlist(p �) = [ ] when p � =[17] atermlist(p+1 p+2 ) = atermlist(p+1 ) ++ atermlist(p+2 )Decoding of grammars and lists of productions.[18] grammar(syntax(Tl)) = syntax productions(Tl)[19] productions([ ]) =[20] productions([T]) = production(T)[21] productions([T; Ts]) = production(T) ++ productions([Ts])7.5.5 Well-formed Parse TreesNow we have prepared all equipment for the characterization of the terms thatrepresent the well-formed parse trees over a grammar. The predicate G ` Tdetermines whether a tree T is well-formed with respect to grammar G. This isde�ned in terms of ` T : T 0, which checks whether T is a tree of type T 0. Sincea tree contains all type information explicitly in the form of productions, this149



7 / context-free grammarscan be checked without reference to the grammar. The well-formedness withrespect to the grammar is then de�ned by checking that all productions in atree are actually productions of the grammar.The main constructor for trees is the function `appl' that creates an applicationof a context-free production to a list of trees such that the types of the argumenttrees correspond to the symbols in the left-hand side of the production. As anexample, consider the grammarsorts Esyntax[a-z] -> E[\+] -> "+"E "+" E -> E {left}The following ATerm is a well-formed parse tree over this grammar for thesentence a+b.appl(prod([sort("E"),lit("+"),sort("E")],sort("E"), attrs([atr("left")])),[appl(prod([char-class([range(97,122)])],sort("E"),no-attrs),[97]),appl(prod([char-class([43])],lit("+"),no-attrs),[43]),appl(prod([char-class([range(97,122)])],sort("E"),no-attrs),[98])])Observe that the main appl has the aterm encoding of the production E "+" E-> E fleftg as �rst argument and as second argument a list of three trees withtypes that correspond to the arguments of that production. The numbers atthe leafs of the trees denote the ASCII values of the characters, i.e., 97 denotesa, 43 denotes + and 98 denotes b.Context-free grammars can be ambiguous, i.e., generate more than one tree fora single sentence. The constructor `amb' is introduced to represent parse forests,i.e., compact representations of sets of parse trees. A term amb([T1; : : : ; Tn])represents the set of parse trees containing the terms T1; : : : ; Tn (which can againcontain `amb' nodes). For example, the string E "*" E "+" E is ambiguous withrespect to the grammarsorts EsyntaxE "+" E -> EE "*" E -> Eand therefore has the following parse forest that represents the two possibleparses, left-associative (E "*" E) "+" E and right associative E "*" (E "+" E).150



Parse Trees / 7.5amb([appl(prod([sort("E"),lit("+"),sort("E")],sort("E"),no-attrs),[appl(prod([sort("E"),lit("*"),sort("E")],sort("E"),no-attrs),[sort("E"),lit("*"),sort("E")]),lit("+"),sort("E")]),appl(prod([sort("E"),lit("*"),sort("E")],sort("E"),no-attrs),[sort("E"),lit("*"),appl(prod([sort("E"),lit("+"),sort("E")],sort("E"),no-attrs),[sort("E"),lit("+"),sort("E")])])])Note that in order to reduce the size of the term, the subtrees for E and "*"and "+" are symbols. The tree represents the parse tree for a sentential form.The yield of a tree is the concatenation of the characters at the leafs of thetree. For instance, the yield of the �rst tree above is [97] [43] [98], i.e., thelist of characters a+b.module Kernel-Sdf-Treesimports Kernel-Sdf-ATerms7:5:4 Kernel-Sdf-Projection7:3:2exportscontext-free syntaxGrammar \`" ATerm ! Bool\`" ATerm \:" ATerm ! Boolyield \[[" Grammar \]]" \(" ATerm \)" ! Symbolsargs(ATerm) ! ATermListtype(ATerm) ! ATermprods(ATerm) ! Productionsvariables\Prod"[0-9 0]� ! ATerm\Res"[0-9 0]� ! ATerm\Attrs"[0-9 0]� ! ATerm\Args"[0-9 0]� ! ATermListequationsA term T is a well-formed parse tree over grammar G, if it is a well-formed treeand if all its productions are productions of G.[1] ` T : type(T) ^ prods(T) � P(G) = >G ` T = > 151



7 / context-free grammarsOtherwise, the tree is not well-formed.[2] G ` T = ? otherwiseThe function `prods' gives the productions of a term, i.e., the list of all produc-tions used in its applications.[3] prods(appl(Prod; Args)) = production(Prod) ++ prods(Args)[4] prods(amb(Args)) = prods(Args)[5] prods([ ]) =[6] prods([T]) = prods(T)[7] prods([T; Ts]) = prods(T) ++ prods([Ts])[8] prods(T) = otherwiseFor the de�nition of G ` T we need several auxiliary functions on terms. Thefunction `args' gives the arguments of a production. The `type' of a productionis its result type. The `type' of an application is the result type of its production.[9] args(prod(Tl; Res; Attrs)) = Tl[10] args(appl(Prod; Args)) = Args[11] type(prod(Tl; Res; Attrs)) = Res[12] type(appl(Prod; Args)) = type(Prod)[13] type(amb([Ts])) = type(�rst([Ts]))An application is a well-formed term of type T if the type of its production isT and if its arguments are well-formed terms with types that correspond to theargument types of the production of the application.[14] type(Prod) = T, ` Args : args(Prod) = >` appl(Prod; Args) : T = >A list of trees or symbols is well-formed if each element is well-formed.[15] ` [ ] : [ ] = >[16] ` [T] : [T 0] = ` T : T 0[17] ` [T; Ts] : [T 0; Ts 0] = ` T : T 0 ^ ` [Ts] : [Ts 0]An ambiguous node is well-formed if all possibilities have the same type.[18] ` amb([T]) : T 0 = ` T : T 0[19] ` amb([T; Ts]) : T 0 = ` T : T 0 ^ ` amb([Ts]) : T 0A symbol term T is a well-formed tree of type T . This is used to represent treesfor sentential forms.[20] symbol(T) = symbol(T 0)` T : T 0 = >The yield of a term is the concatenation of all its leaf symbols.[21] yield[[G]](appl(Prod; Tl)) = yield[[G]](Tl)152



Parse Trees / 7.5[22] yield[[G]](amb(Tl)) = yield[[G]](�rst(Tl))[23] yield[[G]]([ ]) =[24] yield[[G]]([T]) = yield[[G]](T)[25] yield[[G]]([T; Ts]) = yield[[G]](T) ++ yield[[G]]([Ts])[26] yield[[G]](T) = symbol(T) otherwise7.5.6 Trees with Characters and LiteralsIn the previous section we de�ned character classes and literals as symbols ingrammars. Since the meaning of literals is de�ned in terms of character classesby means of context-free productions, the de�nition of well-formedness of parsetrees does not need to be extended for literals. However, for character classeswe have to extend the de�nition such that a character is a tree with as typeany character class that contains it, i.e., a parse tree is a well-formed tree of acharacter class type if it is a character (represented by a natural number) thatis an element of the character class. For example, the termappl(prod([sort("Id"),char-class([range(97,122)])],sort("Id"),no-attrs),[appl(prod([char-class([range(97,122)])],sort("Id"),no-attrs),[97]),98])is a well-formed parse tree for the identi�er ab. The de�nition of well-formednessand yield is extended as follows:module CC-Sdf-Treesimports CC-Sdf-ATermsA:2:2 Kernel-Sdf-Trees7:5:5Character-Class-NormalizationequationsA character is represented by an integer. The characteristic functions for treesare extended for this new tree constructor. The type of a character is thecharacter code itself. The yield of a character is a character class containing thesingle character. A character does not contain any productions.[1] type(n) = n[2] yield[[G]](n) = [character(n)][3] prods(n) =A character code n is a well-formed tree of type T if T represents a characterclass that contains the character corresponding to n.[4] symbol(T) = cc, character(n) 2 cc = >` n : T = > 153



7 / context-free grammars7.5.7 Cyclic Parse ForestsSome grammars generate in�nitely many parse trees for a single string. Forinstance, the grammarsyntax-> S[a] -> SS S -> Sgenerates in�nitely many trees for the string a. The collection of parse treesfor strings over such grammars can be �nitely represented by means of a cyclicparse forest (Billot and Lang, 1989, Rekers, 1992). However, in the term formatde�ned here we have no provisions for cyclic forests. The parser for SDF2 inChapter 3 does generate a cyclic parse forest.In ASF+SDF cyclic structures cannot be expressed in a natural way. This canbe simulated by explicitly representing the pointer structure by means of a tableof references and tags to represent these references. But this would complicatethe entire speci�cation. Since the application of SDF2 will be mainly to non-cyclic grammars we have not gone into the trouble of de�ning cyclic forests inASF+SDF.7.5.8 Equality of TreesWe de�ne an equality predicate := on parse trees. At this point this comes downto syntactic equality. Later on we will extend the predicate such that trees thatare not syntactically equal can be equal. This will be useful to abstract fromcertain details in parse trees. For instance, in x8.3 we will introduce parse treescontaining layout. This is useful for applications that are aware of layout. Butmost applications will want to abstract from the speci�c layout in a tree andconsider two trees equal up to layout. Another application is the equality oftrees with associative operators such as list concatenation. The de�nition ofthe equality predicate below is intended to specify the details of such equalityconsiderations. Furthermore, we de�ne membership of a tree in a parse forest.module Kernel-Sdf-Equalityimports Kernel-Sdf-Trees7:5:5exportscontext-free syntaxATerm \ :=" ATerm ! BoolATerm \ _2" ATerm ! BoolequationsEquality of applications. If the productions are the same two applications areequal if the argument lists are.[1] Args := Args 0 = >appl(Prod; Args) := appl(Prod; Args 0) = >154



Parse Trees / 7.5Argument lists are equal if the elements are pairwise equal.[2] [ ] := [ ] = >[3] [T] := [T 0] = T := T 0[4] [T; Ts] := [T 0; Ts 0] = T := T 0 ^ [Ts] := [Ts 0]An ambiguity node is equal to a tree if it all its possibilities are contained inthe tree and vice versa.[5] amb([Ts]) _2 T ^ T _2 amb([Ts]) = >amb([Ts]) := T = >[6] amb([Ts]) _2 T ^ T _2 amb([Ts]) = >T := amb([Ts]) = >If none of the cases above apply the terms are not equal.[7] T1 := T2 = ? otherwiseA tree is member of a parse forest (tree containing ambiguities) if it is containedin one of the possibilities of an ambiguity.[8] T1 _2 T2 = >T1 _2 amb([T2]) = >[9] T1 _2 T2 _ T1 _2 amb([Ts]) = >T1 _2 amb([T2; Ts]) = >An ambiguity is contained in a forest if all its possibilities are contained in theforest.[10] T1 _2 T2 = >amb([T1]) _2 T2 = >[11] T1 _2 T2 ^ amb([Ts]) _2 T2 = >amb([T1; Ts]) _2 T2 = >An application is contained in an application, if the arguments of the �rst arecontained in the arguments of the second.[12] Args1 _2 Args2 = >appl(Prod; Args1) _2 appl(Prod; Args2) = >Lists[13] [ ] _2 [ ] = >[14] [T] _2 [T 0] = T _2 T 0[15] [T; Ts] _2 [T 0; Ts 0] = T _2 T 0 ^ [Ts] _2 [Ts 0]If none of the cases above apply membership does not hold[16] T1 _2 T2 = ? otherwise 155
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8Disambiguation and AbbreviationIn this chapter we present features for disambiguation of ambiguous grammarsand abbreviation of common patterns. Priorities are used to disambiguate am-biguous expression syntax, providing support for compact abstract syntax. Pri-orities are de�ned by means of an extension of the well-formedness predicateon parse trees. Regular expressions abbreviate common patterns of produc-tions such as lists, optional constructs, alternatives, etc. Regular expressionsare de�ned by generating the de�ning productions for each expression in thegrammar. Lexical and context-free syntax sections separate the de�nition oftokens and phrases. These are integrated into a single context-free grammar bynormalization such that no interference between the two levels is created. Fur-thermore, the de�nition of the placement of layout between tokens is handledby this normalization. Follow restrictions and reject productions are providedto express lexical disambiguation rules such as `prefer longest match' and `preferliterals'.8.1 PrioritiesContext-free grammars can be ambiguous. There are many methods for the dis-ambiguation of context-free grammars. Most programming language orientedformalisms provide some kind of precedence based method. Here we adopt themethod of disambiguation by associativity and priority as used in SDF. Newwith respect to the design of priorities in Heering et al. (1989) is (a) disam-biguation of lexical syntax by lexical priorities, (b) a more uniform notationfor priority declarations, and (c) derivation of productions from priority decla-rations, which provides a more compact notation by avoiding multiple decla-rations of productions. A feature not present in SDF2 is the abbreviation ofproductions in priority declarations by the list of literals of the left-hand side.(For example, "*" > "+" as an abbreviation of E "*" E -> E > E "+" E ->E.) The reason for this omission is the unclear semantics in combination withmodularization. Also < priority-chains are not included in SDF2 because thesecan also be expressed using > chains.We �rst de�ne syntax, projection functions and normalization of priority dec-larations. In x8.1.4 we describe an extension of the well-formedness predicate157



8 / disambiguation and abbreviationon parse trees that characterizes parse trees without priority conicts.Example 8.1.1 The following grammar de�nes priority and associativity rela-tions over the syntax of expressions with unary negation and binary operatorsfor exponentiation, multiplication, addition and subtraction. Note that, unlikein SDF, the syntax for arithmetic operators can be de�ned inside the prioritiessection.syntax"(" E ")" -> E {bracket}priorities"-" E -> E> E "^" E -> E {right}> E "*" E -> E {left}> {left:E "+" E -> E {assoc}E "-" E -> E {left}}This grammar declares that unary � has higher priority than ^, which hashigher priority than binary �, which has higher priority than + and binary �.The latter two are mutually left associative as declared by the group associa-tivity. The bracket production declares that parentheses can also be used todisambiguate expressions. With this grammar the expression E--E*E+E-E^Eshould be interpreted as ((E-((-E)*E))+E)-(E^E). 28.1.1 SyntaxThe priorities section of a grammar de�nes the priority relation> on productionsand the associativity relations `left', `right', `assoc', and `non-assoc'. A prioritydeclaration is either a > chain or an associativity declaration. The objects ofthese declarations are single productions or groups of productions. A groupcan have an X-associativity, which declares the productions in the group to bemutually X-associative.The `bracket' attribute declares a production of the form l A r ! A fbracketg,with `l' (`r') denoting the syntax for the left- (right-) bracket, to be the identityfunction on A. Such productions can be used to explicitly disambiguate sometext or to indicate a di�erent disambiguation than the one given by priorityrules.module Priority-Sdf-Syntaximports Kernel-Sdf-Syntax7:3:1exportssorts Associativity Group Priority Prioritiescontext-free syntax\left" ! Associativity\right" ! Associativity\non-assoc" ! Associativity\assoc" ! Associativity158



Priorities / 8.1\bracket" ! AttributeAssociativity ! AttributeProduction ! Group\f" Productions \g" ! Group\f" Associativity \:" Productions \g" ! GroupfGroup \>"g+ ! PriorityGroup Associativity Group ! PriorityfPriority \;"g� ! Priorities\priorities" Priorities ! Grammarvariables\g"[0-9 0]� ! Group\gg�"[0-9 0]� ! fGroup \>"g�\gg+"[0-9 0]� ! fGroup \>"g+\pr"[0-9 0]� ! Priority\pr"\�"[0-9 0]� ! fPriority \;"g�\pr"\+"[0-9 0]� ! fPriority \;"g+\as"[0-9 0]� ! Associativity8.1.2 ProjectionThe projection function `Pr' yields the list of all priority declarations of a gram-mar. The projection function `Pr' yields the grammar without its priority dec-larations.module Priority-Sdf-Projectionimports Priority-Sdf-Syntax8:1:1 Kernel-Sdf-Projection7:3:2exportscontext-free syntaxPriorities \++" Priorities ! Priorities fassocg\Pr"(Grammar) ! Priorities\Pr"(Grammar) ! GrammarPriority \2" Priorities ! BoolequationsConcatenation of priority declarations.[1] pr�1 ++ pr�2 = pr�1; pr�2The priorities and non-priorities of a grammar.[2] Pr(priorities pr �) = pr �[3] Pr(G1 G2) = Pr(G1) ++ Pr(G2)[4] Pr(G) = otherwise[5] Pr(priorities pr �) = ;[6] Pr(G1 G2) = Pr(G1) Pr(G2)[7] Pr(G) = G otherwiseMembership of a priority declaration. A pair is member of a declaration if thedeclaration contains a pair with similar productions. Recall from x7.3.2 that two159



8 / disambiguation and abbreviationproductions are similar if they are the same except for their attributes, whichmay be di�erent.[8] p1 �= p3 = >, p2 �= p4 = >p1> p2 2 pr�1; p3> p4; pr�2 = >[9] p1 �= p3 ^ p2 �= p4 _ p1 �= p4 ^ p2 �= p3 = >p1 as p2 2 pr�1; p3 as p4; pr�2 = >[10] pr 2 pr � = ?otherwise8.1.3 NormalizationThe complex syntax for priority declarations can be expressed by means of onlybinary declarations for the > relation and the associativity relations as follows:(1) Priority chains of the form p1 > : : : > pn are normalized to lists of simplepriorities of the form pi > pi+1. This relation is closed transitively. (2) Associa-tivity declarations in attributes and group associativities are expressed as binaryassociativity declarations of the form p1 as p2. (3) The productions that arementioned in priorities sections are added to the syntax section of the grammar.Example 8.1.2 The normalization of the grammar in Example 8.1.1 on page 158is:syntax"-" E -> EE "^" E -> E {right}E "*" E -> E {left}E "+" E -> E {assoc}E "-" E -> E {left}priorities"-" E -> E > E "^" E -> E {right},E "^" E -> E {right} right E "^" E -> E {right},E "^" E -> E {right} > E "*" E -> E {left},E "*" E -> E {left} > E "+" E -> E {assoc},E "*" E -> E {left} > E "-" E -> E {left},E "*" E -> E {left} left E "*" E -> E {left},E "+" E -> E {assoc} left E "-" E -> E {left},E "+" E -> E {assoc} assoc E "+" E -> E {assoc},E "-" E -> E {left} left E "-" E -> E {left}Observe that all productions mentioned in the priorities declaration are alsodeclared as productions in the `syntax' part. Furthermore, the > chain is madeinto a binary relation, which is transitively closed. All associativity attributesare expressed by means of binary declarations. 2160



Priorities / 8.1module Priority-Sdf-Normalizationimports Priority-Sdf-Syntax8:1:1 Booleans Kernel-Sdf-Normalization7:3:3Priority-Sdf-Projection8:1:2exportscontext-free syntax\p[[" Grammar \]]" ! Grammar\assoc" \[[" Grammar \]]" ! Priorities\assoc" \[[" Productions \]]" ! Priorities\syntax" \[[" Priorities \]]" ! Grammar\norm" \[[" Priorities \]]" ! Priorities\trans" \[[" Priorities \]]" ! PrioritiesequationsThe normalization function p[[ ]] extracts syntax information from prioritiesand priority information from syntax, normalizes the priorities declarations andtakes the transitive closure.[1] Pr(G) = pr�1, norm[[pr�1]] = pr�2, Pr(G) syntax[[pr�2]] = G 0p[[G]] = G 0 priorities trans[[pr�2 ++ assoc[[G 0]]]]The function norm[[ ]] normalizes a priority declaration to a list of pairs of theform p > p0 or p as p0 by eliminating >-chains and f g groups.[2] norm[[p> p 0]] = p> p 0[3] norm[[p as p 0]] = p as p 0; p 0 as pEach of the priority declarations in the list is normalized.[4] norm[[]] =[5] norm[[p]] =[6] norm[[pr+1 ; pr+2 ]] = norm[[pr+1 ]] ++ norm[[pr+2 ]]A > chain is broken into binary > declarations. The transitive closure de�nedbelow ensures that p1 > p3 if p1 > p2 > p3 was speci�ed.[7] norm[[gg+1 > gg+2 > gg+3 ]] = norm[[gg+1 > gg+2 ; gg+2 > gg+3 ]]Groups and priority. A group is an abbreviation for a pointwise extension ofthe declared relation to the members of the group.[8] norm[[fpg]] =[9] norm[[fg> g]] =[10] norm[[g> fg]] =[11] norm[[fp+1 p+2 g> g]] = norm[[fp+1 g> g; fp+2 g> g]][12] norm[[g> fp+1 p+2 g]] = norm[[g> fp+1 g; g> fp+2 g]][13] norm[[fpg> g]] = norm[[p> g]][14] norm[[g> fpg]] = norm[[g> p]][15] norm[[fas : p �g> g]] = norm[[fas : p �g; fp �g> g]][16] norm[[g> fas : p �g]] = norm[[fas : p �g; g> fp �g]] 161



8 / disambiguation and abbreviationGroups and associativity.[17] norm[[fg as g]] = norm[[g]][18] norm[[fp p �g as g]] = norm[[p as g; fp �g as g]][19] norm[[g as fg]] = norm[[g]][20] norm[[g as fp p �g]] = norm[[g as p; g as fp �g]][21] norm[[fas1 : p �g as2 g]] = norm[[fas1 : p �g; fp �g as2 g]][22] norm[[g as2 fas1 : p �g]] = norm[[fas1 : p �g; g as2 fp �g]]Associativity groups are abbreviations. The members of an associativity groupare mutually associative with respect to the declared relation. If the groupcontains a single production, it is taken to de�ne the associativity for thatproduction. Otherwise, the associativities are de�ned only between the membersof the group and are not de�ned reexively. This makes it possible, for instance,to have a production that is left-associative with respect to itself, but right-associative with respect to a group of other productions.[23] norm[[fas : pg]] = p as p[24] norm[[fas : p1 p2g]] = p1 as p2[25] norm[[fas : p1 p2 p+g]] = norm[[p1 as p2; fas : p1 p+g; fas : p2 p+g]]The function trans[[ ]] takes the transitive closure of the > relation.[26] pr�1; p1> p2; pr�2 = pr �, pr � = pr�3; p2> p3; pr�4, p1> p3 2 pr � 6= >trans[[pr �]] = trans[[p1> p3; pr �]][27] trans[[pr�1; pr; pr�2; pr; pr�3]] = trans[[pr�1; pr; pr�2; pr�3]][28] trans[[pr �]] = pr �otherwiseThe function assoc[[ ]] derives associativity declarations from the productions ofa grammar. Productions that have an attribute declaring them as left, right,or non-associative produce a declaration of that associativity in the prioritiesdeclaration.[29] assoc[[G]] = assoc[[P(G)]][30] assoc[[]] =[31] assoc[[p+1 p+2 ]] = assoc[[p+1 ]] ++ assoc[[p+2 ]][32] assoc[[p]] = p as p when p = � ! A fattr�1; as; attr�2g[33] assoc[[p]] = otherwiseThe function `syntax' derives from a priorities declaration the list of all produc-tions referred to in that declaration.[34] syntax[[]] = ;[35] syntax[[pr+1 ; pr+2 ]] = syntax[[pr+1 ]] syntax[[pr+2 ]][36] syntax[[p1> p2]] = syntax p1 p2162



Priorities / 8.1[37] syntax[[p1 as p2]] = syntax p1 p2Merging and ordering of grammars.[38] priorities = ;[39] priorities pr�1 3 priorities pr�2 = hpriorities pr�1; pr�2, ;i[40] priorities pr � 3 syntax p � = hsyntax p �, priorities pr �i8.1.4 Parse Trees with Priority ConictsWe extend the notion of well-formedness of parse trees to well-formedness over agrammar with priorities. A tree is well-formed if it is a well-formed context-freetree and if, moreover, it does not contain priority conicts.module Priority-Sdf-Treesimports Kernel-Sdf-Trees7:5:5 Priority-Sdf-Projection8:1:2exportscontext-free syntaxGrammar \ p̀rio" ATerm ! Boolconf \[[" Priorities \]]" \(" ATerm \)" ! Boolrootconf \[[" Priorities \]]" \(" Production \;" ATermList \)" ! Boolleft \[[" Priorities \]]" \(" Production \;" ATerm \)" ! Boolmiddle \[[" Priorities \]]" \(" Production \;" ATermList \)" ! Boolright \[[" Priorities \]]" \(" Production \;" ATerm \)" ! BoolequationsWe introduce an extension of the notion of well-formedness. A tree is well-formed with respect to the priorities in a grammar, if it is well-formed withrespect to the grammar and does not contain a priority conict.[1] G ` T = >, conf[[Pr(G)]](T) = ?G p̀rio T = >An application has a conict if it has a root conict or if any of its descendantshas a conict.[2] rootconf[[pr �]](production(Prod); Args) _ conf[[pr �]](Args) = Boolconf[[pr �]](appl(Prod; Args)) = BoolFor the other constructors, a tree has a conict if any descendant has.[3] conf[[pr �]](amb([T])) = conf[[pr �]](T)[4] conf[[pr �]](amb([T; Ts])) = conf[[pr �]](T) _ conf[[pr �]](amb([Ts]))[5] conf[[pr �]]([ ]) = ?[6] conf[[pr �]]([T]) = conf[[pr �]](T)[7] conf[[pr �]]([T; Ts]) = conf[[pr �]](T) _ conf[[pr �]]([Ts]) 163



8 / disambiguation and abbreviationAn application with no descendants does not have a conict.[8] rootconf[[pr �]](p; [ ]) = ?An application with more than one descendant has a root conict if it has a leftconict, a middle conict or a right conict.[9] rootconf[[pr �]](p; [T; Ts]) = left[[pr �]](p; T) _ middle[[pr �]](p; [Ts])An injection, i.e., an application with only one child has a root conict if itsproduction has higher priority than its child's production.[10] production(Prod) = p2, p1> p2 2 pr � = Boolrootconf[[pr �]](p1; [appl(Prod; Args)]) = BoolA tree has a left conict if the productions of root and left-most child are mu-tually right-associative or non-associative, or if the root production has higherpriority than the child production.[11] production(Prod) = p2,p1 right p2 2 pr � _ p1 non-assoc p2 2 pr � _ p1> p2 2 pr � = Boolleft[[pr �]](p1; appl(Prod; Args)) = BoolIf the left-most child is an ambiguitity node, the tree has a conict if there is aleft conict with any of the possibilities of the ambiguity.[12] left[[pr �]](p1; amb([T])) = left[[pr �]](p1; T)[13] left[[pr �]](p1; amb([T; Ts])) = left[[pr �]](p1; T) _ left[[pr �]](p1; amb([Ts]))A tree has a middle conict if the root production has higher priority than anyof the middle child productions.[14] production(Prod) = p2, p1> p2 2 pr � _ middle[[pr �]](p1; [Ts]) = Boolmiddle[[pr �]](p1; [appl(Prod; Args); Ts]) = Bool[15] middle[[pr �]](p; [T]) = right[[pr �]](p; T)[16] middle[[pr �]](p1; [amb([T]); Ts]) = middle[[pr �]](p1; [T; Ts])[17] middle[[pr �]](p1; [T; Ts]) _ middle[[pr �]](p1; [amb([Ts]); Ts]) = Boolmiddle[[pr �]](p1; [amb([T; Ts]); Ts]) = BoolA tree has a right conict if the productions of root and right-most child aremutually left-associative, non-associative or associative (a synonym for left), orif the root production has higher priority than the child production.[18] production(Prod) = p2,p1 left p2 2 pr � _ p1 assoc p2 2 pr �_ p1 non-assoc p2 2 pr � _ p1> p2 2 pr � = Boolright[[pr �]](p1; appl(Prod; Args)) = Bool164



Priorities / 8.1The case of an ambiguity as right-most child.[19] right[[pr �]](p1; amb([T])) = right[[pr �]](p1; T)[20] right[[pr �]](p1; T) _ right[[pr �]](p1; amb([Ts])) = Boolright[[pr �]](p1; amb([T; Ts])) = Bool8.1.5 DiscussionHere we have described the requirements on parse trees that a parser should pro-duce, i.e., not containing priority conicts. There are various ways to implementthis requirement. One possible scheme that is further discussed in Chapter 4 isto interpret the priority rules as a �lter on parse forests that prunes the subtreeswith conicts. This scheme is used in the parser in the current ASF+SDF Meta-Environment (Heering et al., 1989, Klint, 1993). An advantage of this approachis that disambiguation is decoupled from parsing and that other disambiguation�lters could be added. The drawback of the approach is that the parse forest canbecome very large, which hampers e�ciency. Therefore, applying the priorityrules as early as possible in the parsing process will increase e�ciency. A parser-generation time interpretation of priorities is described in Chapter 5. There thepriorities are completely expressed in the parse tables produced by the parsergenerator. An implementation of this method is discussed in Chapter 3.Other Disambiguation Methods Disambiguation by priority conicts is sim-ilar to the methods using precedences of Earley (1975) and Aho et al. (1975).The latter also describe a method for interpreting these rules in the parser gen-eration process, which is less general than the one in Chapter 5. Disambiguationby priorities as de�ned in this section is based on the de�nition of priorities inHeering et al. (1989). In that de�nition a second interpretation of priorities isde�ned. Parse trees are interpreted as a multi-set of productions and the pri-orities are interpreted as an ordering of such multi-sets. This ordering is usedto make a further selection of trees if the �ltering by priority conicts does notsolve all ambiguities.Subtree exclusion is a disambiguation method introduced by Thorup (1994a)that works by specifying a �nite set of partial parse trees that are forbiddenas subtrees of parse trees yielded by the parser. This method allows a more�ne tuned disambiguation than is achievable by the priority scheme. Examplesare disambiguation of generic operators and internal arguments. Some problemscan not be solved appropriately. The if-then-else ambiguity is solved in the sameway as with priorities, which is not correct. In Chapter 4 these and several otherdisambiguation methods are studied in the framework of �lters on parse forests.Brackets Unparsing is complicated in the presence of priorities. When aparse tree is created by a semantics processor, a rewriter for instance, it mightcreate a well-formed tree that does not satisfy the p̀rio predicate, i.e., contains apriority conict. Such trees are semantically meaningful, but problematic when165



8 / disambiguation and abbreviationtheir yield is considered. Naively translating an abstract syntax tree to a stringas described before might lead to a string that, when parsed, does not representthe same tree because it would contain conicts. To force equivalence of treeand string, brackets should be introduced. In Van den Brand and Visser (1996)the rules for priority conicts are used to place brackets when unparsing anabstract syntax tree.8.2 Regular ExpressionsCertain patterns of context-free productions occur again and again. Examples ofsuch patterns are lists, lists with separators, optional constructs and alternative.For example, a list of one or more identi�ers can be speci�ed by the grammarsyntaxId -> Id-ListId-List Id-List -> Id-List {left}Here a list is de�ned in terms of two constructors, one for singleton lists andone for concatenation of lists.Many formalisms provide shortcuts for such patterns by extending the lan-guage of context-free grammars with some collection of regular operators onsymbols. For instance, bnf provides an alternative at the level of productions,i.e., a production has the form A := A0j : : : jAn, where the symbol `j' has themeaning of or. Extended bnf (ebnf) is the canonical extension of bnf withregular operators. In one formulation, Wirth (1977) adds the operators fAgfor iteration and [A] for optionality. Variations on this notation appear in Lee(1972) and Williams (1982). SDF provides iteration A� and A+ and fA Lg�iteration for abbreviation of lists of As separated by a literal L.In this section we give an extension of context-free productions by a set ofregular operators on symbols. In all the approaches mentioned above regularoperators are given a special treatment. New in our formulation is the treatmentof regular operators as �rst class citizens. They are nothing but constructors ofnew symbols that spare the speci�er the burden of having to invent new names.As a consequence, a regular expression can occur at all positions where a normalsymbol can occur, in particular in the right-hand side of a production.This approach is motivated by the following considerations: (1) It enables usto express the meaning of regular expressions by means of a normalization ofthe grammar that adds de�ning productions for each expression. (2) Our gram-mars function as signatures for algebraic speci�cations, where each productionrepresents a function. If regular symbols can not be the result of functions,as is the case in SDF, we still have to de�ne an auxiliary symbol to de�ne afunction that yields such a result. For example, suppose that we want to de�nea function add that adds an integer to each integer in a list of integers. In thesyntax below we can write this asadd(Int, Int*) -> Int*166



Regular Expressions / 8.2whereas in SDF we should introduce an auxiliary sort IntList to represent theresult sort of this function.8.2.1 SyntaxWe consider the following operators:| Empty: The symbol () represents the empty string| Concatenation: The symbol (A1 : : :An) with n > 2 denotes the concate-nation a1 : : : an of expressions ai of type Ai.| Alternative: The symbol A1j : : : jAn, with n � 2, denotes an expression aof one of the types Ai.| Optional: The symbol A? is an optional A| Iteration: The symbol A� (A+) denotes a list a1 : : : an with n � 0 (n � 1)of expressions ai of type A.| Iteration with separator: The symbol fA Bg� (fA Bg+) denotes a lista1b1 : : : bn�1an with n � 0 (n � 1) of expressions ai of type A separatedby expressions bi of type B. Observe that, unlike in SDF, in SDF2 there isno limitation of the symbols that can be used as separators. For example,{Stat [\;]|[\n]}* denotes lists of statements separated by semicolonsor newlines.| Constrained iteration: The symbol fAgn+ with n � 2 denotes a lista1 : : : an of n or more expressions ai of type A. Similarly for fA Bgn+with separator B.| Set expressions: The symbol Set[A] represents the syntax of set expres-sions of the form fa1; : : : ; ang with the ai expressions of type A| Product: The symbolA1# : : :#An, with n � 2, denotes tuples ha1; : : : ; aniof expressions ai of type Ai.| Functions: The symbol (A1 : : :An ) B), with n � 0, denotes functionexpressions f that can be used in expressions f(a1 : : : an) of type B withthe ai expressions of type Ai.| Permutation: The symbol� A1 : : :An � denotes expressions of the forma1 : : : an such that for each Ai exactly one of the aj has type Ai.The syntax of these operators is de�ned in the following module. Observe thatthe empty symbol () and sequences (A1 : : :An) are not de�ned using a singleproduction \(" Symbol � \)" ! Symbol because parentheses around a singlesymbol are already used as brackets; see x7.1. 167



8 / disambiguation and abbreviationmodule Regular-Sdf-Syntaximports Kernel-Sdf-Syntax7:3:1 IntConexportscontext-free syntax\(" \)" ! Symbol\(" Symbol Symbol+ \)" ! SymbolSymbol \?" ! SymbolSymbol \+" ! SymbolSymbol \�" ! Symbol\f" Symbol Symbol \g" \+" ! Symbol\f" Symbol Symbol \g" \�" ! Symbol\f" Symbol \g" NatCon \+" ! Symbol\f" Symbol Symbol \g" NatCon \+" ! Symbol\Set" \[" Symbol \]" ! SymbolSymbol \#" Symbol ! Symbol frightg\(" Symbols \)" Symbol \)" ! SymbolSymbol \j" Symbol ! Symbol frightg\�" Symbols \�" ! SymbolprioritiesfSymbol \?" ! Symbol, Symbol \�" ! Symbol, Symbol \+" ! Symbol,Symbol NatCon \+" ! Symbolg > Symbol \#"Symbol ! Symbol >Symbol \j"Symbol ! Symbol8.2.2 NormalizationWe de�ne a normalization function r[[ ]] that for each regular expression that isused in the grammar introduces one or more productions that de�ne its meaning.In this interpretation regular expressions form a shorthand for de�ning extrasymbols and productions.Example 8.2.1 The following production de�nes a single production describ-ing the structure of a block in a While program consisting of an optional decla-ration followed by a list of statements.syntax"begin" (Decl ";")? {Stat ";"}+ "end" -> StatThe normalization of this grammar is:syntax"begin" (Decl ";")? {Stat ";"}+ "end" -> Stat-> (Decl ";")?(Decl ";") -> (Decl ";")?Decl ";" -> (Decl ";")Stat -> {Stat ";"}+{Stat ";"}+ ";" {Stat ";"}+ -> {Stat ";"}+ {left}168



Regular Expressions / 8.2{Stat ";"}+ ";" {Stat ";"}* -> {Stat ";"}+{Stat ";"}* ";" {Stat ";"}+ -> {Stat ";"}+{Stat ";"}* ";" {Stat ";"}* -> {Stat ";"}* {left}-> {Stat ";"}*{Stat ";"}+ -> {Stat ";"}*priorities{left :{Stat ";"}+ ";" {Stat ";"}+ -> {Stat ";"}+ {left}{Stat ";"}+ ";" {Stat ";"}* -> {Stat ";"}+{Stat ";"}* ";" {Stat ";"}+ -> {Stat ";"}+{Stat ";"}* ";" {Stat ";"}* -> {Stat ";"}* {left}}>{Stat ";"}+ -> {Stat ";"}*We see that the meaning of the operators is expressed by means of extra pro-ductions. Observe how regular expressions are used as target symbols of pro-ductions. 2module Regular-Sdf-Normalizationimports Regular-Sdf-Syntax8:2:1 Priority-Sdf-Syntax8:1:1Literals-Sdf-Syntax7:4:3 Kernel-Sdf-Normalization7:3:3exportscontext-free syntax\r[[" Grammar \]]" ! Grammar\r[[" Symbols \]]" ! Grammaralt(Symbol, Symbol) ! Grammartup(Symbol) ! Symbolsperm(Symbols) ! Productionsperm3(Symbols, Symbols) ! ProductionsequationsThe function r[[ ]] adds de�ning productions for each regular expresssion occur-ring in one of the productions of the grammar. Existing productions are nota�ected.[1] r[[G]] = G r[[�]] when f�g = symbols(G)Recall that the function `symbols', de�ned in x7.3.2, gives the set of all symbolsin a grammar. The function r[[ ]] generates a grammar for each of the regularexpressions in the list of symbols.[2] r[[]] = ;[3] r[[�+ �+]] = r[[�+]] r[[� +]]Concatenation The regular expression (�) is a symbol that abbreviates theconcatenation of the symbols �.[4] r[[( )]] = syntax ! ( ) 169



8 / disambiguation and abbreviation[5] p = A �+ ! (A �+)r[[(A �+)]] = syntax p r[[A �+]]Note that r[[A �+]] recursively produces the productions for regular expressionsin the list of symbols A �+.Alternative The alternative AjB denotes either A or B. We could thus de�ner[[AjB]] to yield the productions A ! AjB and B ! AjB. However, if one ofthe alternatives is again an alternative, an unnecessary chain A ! AjB andAjB ! AjBjC is created. We would rather have A ! AjBjC. Therefore, wede�ne[6] r[[A j B]] = alt(A j B; A j B)where the function `alt' unpacks the alternative until a symbol is reached thatis not an alternative.[7] alt(B1 j B2; A) = alt(B1; A) alt(B2; A)[8] alt(B; A) = syntax B ! A r[[B]] otherwiseOptional The optional construct A? is either empty or A.[9] p1 = ! A? ,p2 = A ! A?r[[A?]] = syntax p1 p2 r[[A]]Iteration The iteration operator A+ denotes lists of one or more A's, i.e.,either A or A A or A A A or : : : . The iteration A� denotes a list of zero ormore A's, i.e., � (empty) or A or A A or A A A or : : : There are several ways tode�ne such lists with productions. It is not su�cient to de�ne a list by meansof the productions ! A� A ! A+A+! A� A+A ! A+The symbols A� and A+ can be the right-hand side of any production, i.e., listscan be the result of arbitrary functions. Therefore, an A� expression can alsocontain function calls and variables. For instance, if a grammar contains theproductionyield(Tree) -> Symbol*then yield(T1) yield(T2) should also be an expression of type Symbol* (withT1 and T2 expression of type Tree). We have the following rules for the com-position of list expressions.0. A single A is an A+.1. An A+ followed by an A+ is an A+.170



Regular Expressions / 8.22. An A+ followed by an A� is an A+.3. An A� followed by an A+ is an A+.4. An A� followed by an A� is an A�.5. An A� can be empty.6. An A+ is an A�.Productions expressing these rules are generated by the following equation.The priorities section declares the concatenation operators to be mutually left-associative. The priority prevents that the empty production and the injectionare used vacuously.
[10]

p0 = A ! A+ ,p1 = A+ A+! A+ fleftg,p2 = A+ A� ! A+ ,p3 = A� A+! A+ ,p4 = A� A� ! A� fleftg,p5 = ! A� ,p6 = A+! A�r[[A�]] = syntax p0 p1 p2 p3 p4 p5 p6priorities fleft : p1 p2 p3 p4g> fp5 p6g r[[A]][11] r[[A+]] = r[[A�]]Iteration with Separator The iteration with separator operators fA Bg+and fA Bg� denote iteration of A's separated by B's. Their meaning is de�nedanalogously to A+ and A�.
[12]

p0 = A ! fA Bg+ ,p1 = fA Bg+ B fA Bg+! fA Bg+ fleftg,p2 = fA Bg+ B fA Bg� ! fA Bg+ ,p3 = fA Bg� B fA Bg+! fA Bg+ ,p4 = fA Bg� B fA Bg� ! fA Bg� fleftg,p5 = ! fA Bg� ,p6 = fA Bg+! fA Bg�r[[fA Bg�]] = syntax p0 p1 p2 p3 p4 p5 p6priorities fleft : p1 p2 p3 p4g> p6 r[[A B]][13] r[[fA Bg+]] = r[[fA Bg�]]Constrained Iteration The iteration operator fAgn+ denotes the iterationof at least n As. First of all we de�ne that zero or more As corresponds to �iteration and that one or more As corresponds to + iteration. For integers n � 2171



8 / disambiguation and abbreviationwe de�ne fAgn+ in terms of fAg(n� 1)+, and eventually A+, by productionsof the form A fAg(n� 1)+! fAgn+.[14] fAg 0 + = A�[15] fAg 1 + = A+[16] n � 2 = >, n � 1 = n 0, p = A fAg n 0 + ! fAg n +r[[fAg n +]] = syntax p r[[fAg n 0 +]]Constrained iteration is de�ned similarly for lists with separators.[17] fA Bg 0 + = fA Bg�[18] fA Bg 1 + = fA Bg+[19] n � 2 = >, n � 1 = n 0, p = A B fA Bg n 0 + ! fA Bg n +r[[fA Bg n +]] = syntax p r[[fA Bg n 0 +]]Tuples For the de�nition of functions that return a tuple of values, newsorts have to be invented. To give sensible types to tuples the notation A#Bis introduced. A symbol A1# : : :#An denotes a tuple of A1 : : :An expressions.A tuple is written as hT1; : : : ; Tni, where the Ti are expresions of type Ai.[20] "<" ++ tup(A # B) ++ ">" = �, p = � ! A # Br[[A # B]] = syntax p r[[�]]The auxiliary function tup[[ ]] derives the syntax of the body of the tuple byseparating the symbols by commas.[21] tup(A # B) = tup(A) ++ "," ++ tup(B)[22] tup(A) = A otherwiseSets The conventional notation for sets is a list of items between f and g.The operator Set[A] generates this notation such that if T1 : : : Tn are expressionsof type A, then fT1; : : : ; Tng is an expression of type Set[A].[23] � = "{" fA ","g� "}", p = � ! Set[A]r[[Set[A]]] = r[[�]] syntax pFunctions Sometimes it is convenient to pass functions around as data. Theoperator (�) B) can be used to give a type to functions. It denotes the sort offunctions from � to B. The operator generates syntax for the pre�x applicationof a function to an argument.[24] p = (� ) B) "(" � ")"! Br[[(� ) B)]] = syntax p r[[� B]]172



Regular Expressions / 8.2Permutation The permutation symbol � � � denotes any concatenationof the symbols in �, i.e., � !� �� if � is a permutation of �.[25] r[[� � �]] = syntax perm(�) r[[�]]The function `perm' generates the productions for all permutations of a set ofsymbols. In case the permutation consists of two elements it generates the twoproductions directly. In case of more elements the function `perm3' is used togenerate permutations.[26] perm() = ! � �[27] perm(A) = A ! � A �[28] perm(A B) = A B ! � A B � B A ! � A B �[29] perm(�) = perm3(; �) when j � j > 2 = >For each symbol in the list a production is generated with that symbol �rst anda permutation of the other symbols following it.[30] perm3(�; ) =[31] p = A � � � � ! � � A � �perm3(�; A �) = p ++ perm3(� A; �) ++ perm(� �)It should be observed that this is not a very e�cient way to implement permu-tation constructs. It should be adequate for permutations of 2 or 3 elements,though. What is needed in addition to the generation of these productions,is the normalization of the parse trees over these productions to a form thatlists the elements in a �xed order such that semantic functions do not alsohave to deal with all permutations. Cameron (1993) describes an extension ofLL(1) parsing for permutation operators. An alternative approach suggested byCameron (1993) is the introduction of an intermediate symbol representing theunion of the symbols in the permutation and a check after parsing that eachsymbol in the permutation is represented exactly once.Discussion We could have handled several of these regular expressions bytranslating them to other regular expressions. For instance, optionality canbe expressed by means of empty and alternative via the equation A? = ()jA. Inthe speci�cation above we have chosen not follow this route. Except for a fewcases involving constrained iteration.8.2.3 Equality of Parse Trees with ListsSince all new constructs are expressed by means of existing constructs|all reg-ular expressions are expressed by means of generated context-free productions|there is no need to extend the de�nition of well-formedness of parse trees.We do extend the de�nition of the equality of trees. This de�nition makes listsequal modulo associativity of the concatenation operators. It is the basis for173



8 / disambiguation and abbreviationmatching modulo associativity. We give the equations that should be consideredin matching, where a variable a+ (a�) ranges over all constructs of type A+ (A�)and �A denotes the tree constructed with ! A�. Empty sublists are units forconcatenation and can be removed.�A a+ = a+ a+ �A = a+�A a� = a� a� �A = a�Injections from A+ into A� can be removed or lifted over concatenations.[a+1 ! A�] [a+1 ! A�] = [(a+1 a+2 )! A�]a+1 [a+1 ! A�] = a+1 a+2[a+1 ! A�] a+1 = a+1 a+2Right-associative concatenations are equal to left-associative ones. Each of theseexpressions involves di�erent concatenation operators.a+1 (a+2 a+3 ) = (a+1 a+2 ) a+3 a�1 (a+2 a+3 ) = (a�1 a+2 ) a+3a�1 (a�2 a+3 ) = (a�1 a�2) a+3 a�1 (a+2 a�3) = (a�1 a+2 ) a�3a+1 (a�2 a+3 ) = (a+1 a�2) a+3 a+1 (a�2 a�3) = (a+1 a�2) a�3a+1 (a+2 a�3) = (a+1 a+2 ) a�3 a�1 (a�2 a�3) = (a�1 a�2) a�38.3 Lexical and Context-Free SyntaxThe syntax of a programming language is usually divided into two levels: lexi-cal syntax and context-free syntax. Lexical syntax is the syntax of the tokens,the words of the language, e.g., identi�ers, numbers and keywords. Context-freesyntax is the syntax of the sentences of a language, e.g., expressions, statements,type declarations and function de�nitions. The division a�ects both languagede�nition and implementation. Conventionally lexical analysis is restricted togrammars that can be recognized by �nite automata, whereas context-free anal-ysis is implemented with push-down automata. Indeed, it is sometimes not clearwhether the division is motivated by the implementation or by an inherent con-cept of lexical syntax.In many formalisms the separation is even physical; lexical and context-freesyntax are de�ned with completely di�erent formalisms that are written in sep-arate �les. For instance, yacc and Metal use lex to de�ne lexical syntax.This means lexical de�nitions in the form of a number of regular expressionsare de�ned in a separate �le. Context-free and lexical de�nitions share a dec-laration of token symbols that constitutes the interface between the lexical andcontext-free level. The syntax de�nition formalism of pccts uses a lexical syn-tax similar to lex, but provides a mechanism to include token de�nitions in thesame �le as the context-free syntax de�nition. In SDF lexical and context-freesyntax are integrated in one formalism, but still uses di�erent semantics forboth. All these approaches have in common that the distinction between lexical174



Lexical and Context-Free Syntax / 8.3and context-free syntax is identi�ed with the distinction between regular andcontext-free grammars.In SDF2 the inherent distinction between the two categories is that context-free symbols can be separated by layout, while lexical symbols cannot. Beyondthat di�erence there is none. The exact same features should be available forthe de�nition of lexical and context-free syntax.New in this approach is that we provide a uniform notation for the de�ni-tion of lexical and context-free syntax by means of context-free productions.Grammars for lexical and context-free syntax are normalized to the context-free grammars of the kernel. The distinction between lexical and context-freesyntax is completely expressed in the resulting productions.By treating lexical and context-free syntax identically, every extension that isde�ned for one is also applicable to the other. For instance, in x8.1 we de�nedpriorities for disambiguation. In Heering et al. (1989) these are only de�nedfor context-free syntax. As result of our approach we can also provide lexicaldisambiguation through priorities. Similarly the regular operators introducedin x8.2 can be used in the de�nition of both lexical and context-free syntax.In addition to lexical syntax we also de�ne variables. Variable schemes areused in the speci�cation of the semantics of a language. We also introduce thenotion of lexical variables that range over constructs introduced in lexical syntaxgrammars.The extension in this section is called Basic Sdf because it covers the basicidea of the original SDF: integration of lexical and context-free syntax in oneformalism.Example 8.3.1 The following de�nition introduces a simple expression lan-guage with variables and addition.sorts Id Explexical syntax[\ \t\n] -> LAYOUT[a-z]+ -> Idcontext-free syntaxId -> ExpExp "+" Exp -> Exp {left}variables[i] -> Id[xyz] -> ExpThe lexical syntax section de�nes the syntax of layout as spaces, tabs and new-lines and identi�ers as lists of one or more lowercase letters. The division inlexical and context-free syntax entails that whitespace can occur between ex-pressions, but not between the letters of an identi�er.To illustrate the power of the integration of lexical and context-free syntaxwe can extend the layout convention above by introducing C-like commentsconsisting of a string of comment words between /* and */, as follows: 175



8 / disambiguation and abbreviationsorts ComWord Commentlexical syntax~[\ \t\n\|\/\*]+ -> ComWordcontext-free syntax"/*" ComWord* "*/" -> CommentComment -> LAYOUTBecause the de�nition of comments is part of the context-free syntax, commentwords can be separated by layout, including layout. This means that we havespeci�ed nested comments, which is useful when commenting out pieces of codealready containing comment.We can extend the de�tion of comments further to include syntactically cor-rect expressions between bars as comment words.context-free syntax"|" Exp "|" -> ComWordFor instance, the texta + b /* an expression |x + y| denotesthe addition of |x| and |y| */ + cis a syntactically correct expression over the grammar above denoting the ex-pression a+b+c with some comment after b. In the conventional setting of a sep-arate scanner and parser this would require a call to the parser from the scanner.One application of syntactically correct program fragments in comments is intypesetting programs for documentation. The typesetting algorithms appliedto the real program text can also be applied in typesetting the expressions incomments and crossreferences to program variables can be extended to variablesoccurring comments. 28.3.1 SyntaxThe grammar constructors `lexical syntax' and `context-free syntax' introducethe syntax of lexical constructs and context-free constructs, respectively. Thegrammar constructors `variables' and `lexical variables' introduce the syntax ofvariables over context-free symbols and variables over lexical symbols, respec-tively. The symbol constructors h -LEXi, h -CFi and h -VARi are used to indicatelexical symbols, context-free symbols and variable symbols, respectively. Thespecial symbol LAYOUT is used to de�ne layout.module Basic-Sdf-Syntaximports Kernel-Sdf-Syntax7:3:1exportscontext-free syntax\lexical" \syntax" Productions ! Grammar\context-free" \syntax" Productions ! Grammar\variables" Productions ! Grammar\lexical" \variables" Productions ! Grammar176



Lexical and Context-Free Syntax / 8.3\<" Symbol \-CF" \>" ! Symbol\<" Symbol \-LEX" \>" ! Symbol\<" Symbol \-VAR" \>" ! Symbol\LAYOUT" ! Symbol8.3.2 NormalizationThe normalization function de�ned below expresses the meaning of lexical andcontext-free syntax by merging them into a single grammar. To avoid interfer-ence between the two levels, the symbols in the lexical syntax are renamed intoh -LEXi symbols and the symbols in the context-free syntax are renamed intoh -CFi symbols. These ideas are illustrated in the following example.Example 8.3.2 The grammar in Example 8.3.1 is mapped to the followinggrammar in which lexical and context-free syntax have been merged.sorts Id Exp ComWord Commentsyntax<[a-z]+-LEX> -> <Id-LEX><Id-LEX> -> <Id-CF><Id-CF> -> <Exp-CF><Exp-CF> <LAYOUT?-CF> "+"<LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}[i] -> <<Id-CF>-VAR><<Id-CF>-VAR> -> <Id-CF>[xyz] -> <<Exp-CF>-VAR><<Exp-CF>-VAR> -> <Exp-CF><~[\ \t\n\|\047\*]+-LEX> -> <ComWord-LEX><ComWord-LEX> -> <ComWord-CF>"|" <LAYOUT?-CF> <Exp-CF><LAYOUT?-CF> "|" -> <ComWord-CF>"/*" <LAYOUT?-CF> <ComWord*-CF><LAYOUT?-CF> "*/" -> <Comment-CF>[\ \t\n] -> <LAYOUT-LEX><LAYOUT-LEX> -> <LAYOUT-CF><Comment-CF> -> <LAYOUT-CF><LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> {left}-> <LAYOUT?-CF><LAYOUT-CF> -> <LAYOUT?-CF>The symbols in lexical productions are renamed into h -LEXi symbols. Thesymbols in context-free productions are renamed into h -CFi symbols. Theconnection between lexical and context-free syntax is made by an injection fromeach hA-LEXi symbol into the corresponding hA-CFi symbol. 2The following module makes these ideas formal by introducing the normal-ization function b[[ ]]. 177



8 / disambiguation and abbreviationmodule Basic-Sdf-Normalizationimports Basic-Sdf-Syntax8:3:1 Regular-Sdf-Syntax8:2:1 Priority-Sdf-Syntax8:1:1Kernel-Sdf-Normalization7:3:3exportscontext-free syntax\b[[" Grammar \]]" ! Grammar\baux[[" Grammar \]]" ! Grammar\<" Symbols \-LEXs" \>" ! Symbols\<" Production \-LEX" \>" ! Production\<" Productions \-LEXs" \>" ! Productions\<" Grammar \-LEX" \>" ! Grammar\<" Symbols \-CFs" \>" ! Symbols\<" Production \-CF" \>" ! Production\<" Productions \-CFs" \>" ! Productions\<" Grammar \-CF" \>" ! Grammar\<" Productions \-VARs" \>" ! Productions\<" Productions \-LEXVARs" \>" ! ProductionsequationsThe normalization function b[[ ]] integrates lexical and context-free syntax. Itapplies the auxiliary function baux to each subgrammar of a grammar to trans-form lexical and context-free sections into normal production sections by re-naming symbols and separating context-free symbols by hLAYOUT?-CFi, whichentails that two tokens can optionally be separated by hLAYOUT?-CFi. Context-free layout is a list of lexical layout. Concatenation of layout is de�ned by theproduction added by the function b[[ ]].[1] p = hLAYOUT-CFi hLAYOUT-CFi ! hLAYOUT-CFi fleftgb[[G]] = syntax p baux[[G]]The default rule declares that unless otherwise stated baux does not a�ect agrammar. Below we deal with the exceptions.[2] baux[[;]] = ;[3] baux[[G1 G2]] = baux[[G1]] baux[[G2]][4] baux[[G]] = G otherwiseLexical Syntax Lexical syntax grammars are translated to normal syntax gram-mars by encoding the symbols of the grammar to hA-LEXi symbols. Further-more, for each symbol appearing in a lexical syntax section an injection fromthe lexical into the context-free symbol is added.[5] baux[[lexical syntax p �]] = hsyntax p �-LEXi[6] h�-LEXsi = when � =178



Lexical and Context-Free Syntax / 8.3[7] hA-LEXsi = hA-LEXi[8] h�+ �+-LEXsi = h�+-LEXsi ++ h� +-LEXsi[9] h� ! A $-LEXi = h�-LEXsi ! hA-LEXi $[10] h� ! A $-LEXsi = h� ! A $-LEXi hA-LEXsi ! hA-CFi[11] hp �-LEXsi = when p � =[12] hp+1 p+2 -LEXsi = hp+1 -LEXsi ++ hp+2 -LEXsi[13] hsyntax p �-LEXi = syntax hp �-LEXsi[14] hG1 G2-LEXi = hG1-LEXi hG2-LEXi[15] h;-LEXi = ;Context-free Syntax Context-free syntax is treated similarly to lexical syntax.All symbols in the production are mapped to hA-CFi symbols. The impor-tant di�erence is that each adjacent pair of symbols in the left-hand side of aproduction is separated by the symbol hLAYOUT?-CFi.[16] baux[[context-free syntax p �]] = hsyntax p �-CFi[17] h�-CFsi = when � =[18] hA-CFsi = hA-CFi[19] h�+ � +-CFsi = h�+-CFsi ++ hLAYOUT?-CFi ++ h� +-CFsi[20] h� ! A $-CFi = h�-CFsi ! hA-CFi $[21] hp-CFsi = hp-CFi[22] hp �-CFsi = when p � =[23] hp+1 p+2 -CFsi = hp+1 -CFsi ++ hp+2 -CFsi[24] hsyntax p �-CFi = syntax hp �-CFsi[25] hG1 G2-CFi = hG1-CFi hG2-CFi[26] h;-CFi = ;Variables Variables and lexical variables grammars introduce tokens that havethe status of variables. The symbol constructor hA-VARi is used to denotevariables over the symbol A. The left-hand sides of variable productions areinterpreted as lexical syntax. The lexical value produced by such a left-handside is given the type of a variable over the symbol in the right-hand side ofthe production. For each production in a variables grammar, two productionsare generated. The �rst interprets the left-hand side of the production as alexical pattern, i.e., the symbols on the left-hand side are lexical symbols andno layout between symbols can occur. The right-hand side is hhA-CFi-VARiindicating that the pattern is a variable over the context-free symbols A. Thesecond production injects hA-CFi variables into hA-CFi such that a variable canoccur whereever an hA-CFi can occur.[27] baux[[variables p �]] = syntax hp �-VARsi[28] h-VARsi =[29] hp+1 p+2 -VARsi = hp+1 -VARsi ++ hp+2 -VARsi[30] h� ! A $-VARsi = h�-LEXsi ! hhA-CFi-VARi $hhA-CFi-VARi ! hA-CFi 179



8 / disambiguation and abbreviationLexical variables are treated similarly, but their result sort is the correspondinglexical sort.[31] baux[[lexical variables p �]] = syntax hp �-LEXVARsi[32] h-LEXVARsi =[33] hp+1 p+2 -LEXVARsi = hp+1 -LEXVARsi ++ hp+2 -LEXVARsi[34] h� ! A $-LEXVARsi = h�-LEXsi ! hhA-LEXi-VARi $hhA-LEXi-VARi ! hA-LEXiOrdering Grammars The following equations specify the ordering of grammars,where the following order is obtained: lexical syntax, context-free syntax, lexicalvariables, and variables. We only show two of the equations, the other cases aresimilar.[35] G1 = context-free syntax p�1, G2 = context-free syntax p�2G1 3 G2 = hcontext-free syntax p�1 p�2, ;i[36] G1 = context-free syntax p�1, G2 = lexical syntax p�2G1 3 G2 = hlexical syntax p�2, context-free syntax p�1i8.3.3 Parse TreesSince we have expressed the meaning of lexical syntax and context-free syntaxin terms of normal syntax productions, we do not have to extend the de�nitionof parse trees, except for the encoding of symbols and grammars in the ATermformat. See xA.2 for the encoding and decoding of the newly introduced con-structs. This entails that trees for lexical and context-free syntax have the sameform. In particular, the structure assigned to lexical tokens by the grammar isretained in parse trees for tokens.We will re�ne the equality predicate on trees such that layout is ignored. Inconsidering whether two trees are equivalent it is likely that we do not wantto consider layout. For this purpose it is not required to �rst translate a parsetree to an abstract syntax tree. It su�ces to de�ne two arbitrary layout treesas equivalent, as is done in the following extension of the equality predicate ontrees.module Basic-Sdf-Equalityimports Kernel-Sdf-Equality7:5:8 Basic-Sdf-ATermsA:2:2Regular-Sdf-ATermsA:2:2equations[1] symbol(type(T1)) = hLAYOUT-CFi, symbol(type(T2)) = hLAYOUT-CFiT1 := T2 = >[2] symbol(type(T1)) = hLAYOUT?-CFi, symbol(type(T2)) = hLAYOUT?-CFiT1 := T2 = >180



Restrictions / 8.48.3.4 DiscussionLexical Layout In some languages, such as FORTRAN, tokens can contain somekind of layout. In Heering et al. (1989) the symbol IGNORE is introduced for thispurpose. This can be dealt with by separating the symbols in a lexical produc-tion by a lexical layout symbol just as this is done with context-free productions.This is not done in the current version because for most languages this is notnecessary, but it is straightforward to add this feature to the normalizationabove.Implementation A conventional implementation of parsers for lexical and context-free syntax is based on a separate scanner and parser. Such an implementationcan be achieved for grammars as introduced here by separating productions forh -LEXi and h -VARi symbols from productions for h -CFi symbols and gener-ating a scanner based on �nite automata for the �rst set of productions andby generating a parser for the second set of productions based on push-downautomata. Scanner and parser communicate through some shared bu�er-likedata-structure. A requirement for this approach is that the lexical productionsform a regular grammar. This can be enforced by specifying static constraintson lexical productions.The parser generator for SDF2 described in Chapter 3 does not depend ona separate scanner. Instead `lexical analysis', i.e., parsing according to theproductions for h -LEXi symbols, is incorporated in the parser. To cope withambiguities and lookahead, generalized LR parsing is used. A similar approachis described by Salomon and Cormack (1989, 1995) under the name scannerlessparsing using conventional LR techniques.8.4 RestrictionsWhen a distinction is made between lexical and context-free syntax, lexicalambiguities have to be solved before tokens can be sent to the parser. This isusually done by applying rules such as `prefer longest match', `prefer keywords'and `prefer variables'.By removing this distinction, as we did in the previous section, lexical am-biguities can be dealt with in the same way as context-free ambiguities. Forexample, in x8.1 we de�ned disambiguation by priorities, which applies bothto lexical and context-free syntax. Furthermore, many lexical ambiguities aresolved by considering the context in which tokens occur. For instance, the well-known problem of distinguishing an occurrence of the subrange 1::10 from twoconsecutive occurrences of the real numbers 1: and :10 in Pascal is solved au-tomatically, because ranges and reals do not occur in the same context in thegrammar.However, not all lexical ambiguities can be solved by context or by means ofpriorities. Some lexical ambiguities need to be solved by rules such as `preferlongest match' and `prefer literals'.In this section we introduce two extensions of context-free grammars that are181



8 / disambiguation and abbreviationaimed at lexical disambiguation: follow restrictions and reject productions. Afollow restriction A{/{cc declares that the symbol A can not be followed by anycharacter in the character class cc. A reject production �! A frejectg declaresthat any tree of type A should be rejected if there exists a tree with the sameyield that has this reject production as root production. These constructs su�cefor expressing most lexical disambiguation rules.Example 8.4.1 The de�nition of a simple expression language with nestedcomments in Example 8.3.1 contains two lexical ambiguities. First, the de�ni-tion of lists of comment-words ComWord* is ambiguous. The string abc can beone comment word (a list of characters from the class ~[\ \t\n\|\/]), but itcan also be considered as a list of two comment-words ab and c or as a and bc oras a and b and c. We want to express that the longest possible comment-wordshould be selected. Second, the de�nition of identi�ers and variables for identi-�ers and expressions overlap, i.e., x can be either an identi�er or an expressionof sort Exp. Here we want to express the rule `prefer variables' that selects avariable over a lexical. These ambiguities are solved by the following rules:lexical restrictionsComWord -/- ~[\ \t\n\|\/]syntax<<Id-CF>-VAR> -> <Id-CF> {reject}<<Exp-CF>-VAR> -> <Id-CF> {reject}The �rst rule states that a comment-word should not be followed by any of thecharacters in ~[\ \t\n\|\/]. This solves the problem because it rules out allparses, except the one in which abc is one word. The last two rules state thatvariables should be preferred over identi�ers. 28.4.1 SyntaxA follow restriction has the form A{/{cc. Follow restrictions are declared in agrammar starting with the keyword `restrictions' followed by a list of restric-tions. A reject production is a normal production attributed with the attribute`reject'.module Restrictions-Sdf-Syntaximports CC-Sdf-Syntax7:4:2exportssorts Restriction Restrictionscontext-free syntaxSymbols \{/{" CharClass ! RestrictionRestriction� ! Restrictions\restrictions" Restrictions ! Grammar\reject" ! Attributevariables\restr"[0-9 0]� ! Restriction\restr�"[0-9 0]� ! Restriction�182



Restrictions / 8.4\restr+"[0-9 0]� ! Restriction+8.4.2 ProjectionThe function `R' gives the restrictions of a grammar. The function �A looks upthe restrictions for some symbol.module Restrictions-Sdf-Projectionimports Restrictions-Sdf-Syntax8:4:1exportscontext-free syntaxRestrictions \++" Restrictions ! Restrictions frightg\R"(Grammar) ! Restrictions� \ " Symbol \(" Restrictions \)" ! CharClassequationsConcatenation of restrictions.[1] restr�1 ++ restr�2 = restr�1 restr�2The restrictions of a grammar.[2] R(restrictions restr �) = restr �[3] R(G1 G2) = R(G1) ++ R(G2)[4] R(G) = otherwiseThe restrictions for a symbol.[5] �A() = [][6] �A( {/{ cc restr �) = �A(restr �)[7] �A(A � {/{ cc restr �) = cc _ �A(� {/{ cc restr �)[8] �A(B � {/{ cc restr �) = �A(� {/{ cc restr �) otherwise8.4.3 NormalizationNo special normalization is needed for restrictions except the normal orderingand merging of grammars.module Restrictions-Sdf-Normalizationimports Restrictions-Sdf-Syntax8:4:1 CC-Sdf-Normalization7:4:2equationsMerging and ordering of grammars.[1] restrictions restr�1 3 restrictions restr�2 = hrestrictions restr�1 restr�2, ;i[2] restrictions restr � 3 syntax p � = hsyntax p �, restrictions restr �i183



8 / disambiguation and abbreviation8.4.4 DiscussionThe disambiguation rules presented above are derived from similar rules intro-duced by Salomon and Cormack (1989). The adjacency restriction of Salomonand Cormack (1989) is more general. It has the form A{/{B and declares thatsymbols A and B should not be adjacent. Since this may require arbitrarylong lookahead, we have chosen for the simpler follow restrictions, which can beimplemented by restricting the lookahead of productions. The implementationof reject productions in SGLR parsing described in Chapter 3 is more generalthan the implementation based on noncanonical SLR(1) parsing of Salomon andCormack (1989).We have not presented the interpretation of follow restrictions and rejectproductions as disambiguation devices. Follow restrictions can be interpretedas an extension of the well-formedness predicate on parse trees. If a followrestriction applies to a symbol, for any tree with that symbol as type, thecharacter immediately next to the right-most character of its yield should notbe contained in the restriction. For a discussion of the semantics of rejectproductions see Chapter 3.In the current situation lexical disambiguation rules have to be invented by theuser. In SDF lexical disambiguation is completely taken care of in the scannerby means of a number of heuristics. These heuristics do cause problems in anumber of cases. Therefore, it is attractive to have complete control over lexicaldisambiguation as is provided by restrictions and reject productions introducedhere. However, it would be desirable if for most cases the necessary restrictionscould be derived automatically from the grammar. Although some schemes havebeen considered, it is not yet clear how the derivation rules should be de�ned.
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9Renaming and ModularizationIn this chapter we introduce a module mechanism for reusing parts of syntaxde�nitions. In order to adapt imported modules to speci�c applications andto avoid name clashes, a renaming mechanism is provided that can be used torename symbols and productions. The renaming mechanism is also used in thede�nition of symbol aliases that can be used to de�ne abbreviated names forlarge regular expressions. Renamings are also used to de�ne symbol parameter-ization of modules.
9.1 RenamingsIn the previous sections we have presented a number of features that enable moreconcise de�nition of syntax than plain context-free grammars. The grammarsthat can be de�ned are long monolithic lists of productions. To promote reuseof grammars we will introduce in x9.3 a module layer on top of grammars, suchthat parts of a language de�nition can be reused in various other de�nitions.To make the opportunities for reuse even greater we introduce here a renamingoperator on grammars. Renamings enable the adaptation of a generic grammarto speci�c needs by renaming sorts and productions. A renaming is eithera symbol renaming A ) B that renames A to B or a production renamingp1 ) p2 that renames p1 to p2. For example, the renaming[Key => Var Value => Term Table => Substlookup(Table, Key) -> Value=> Subst "[" Var "]" -> Term ]speci�es the renaming of symbols Key and Value to Var and Term, respec-tively, and the renaming of the production lookup(Table, Key) -> Value toSubst "[" Var "]" -> Term.Once we have de�ned renamings on grammars we can apply them in severalsituations: renaming of imported modules, symbol parameters of modules andsymbol aliases. These will be the subject of the next sections. 185



9 / renaming and modularization9.1.1 SyntaxA renaming is a list of symbol renamings of the form A ) B and productionrenamings of the form p1 ) p2.module Renaming-Sdf-Syntaximports Kernel-Sdf-Syntax7:3:1exportssorts Renaming Renamingscontext-free syntax\[" Renaming� \]" ! RenamingsSymbol \)" Symbol ! RenamingProduction \)" Production ! Renamingvariables\�"[0-9 0]� ! Renamings\�"\�"[0-9 0]� ! Renaming�\�"\+"[0-9 0]� ! Renaming+The only requirement on production renamings is that if � ! A ) � ! Bis a renaming, then � and � should be similar, i.e., the non-terminal partsshould correspond. This entails that production renamings can only be used torename literals between the arguments|the `syntax'|and not the order of thearguments.9.1.2 ProjectionWe de�ne two projection functions for looking up the value of a symbol or aproduction in a list of renamings.module Renaming-Sdf-Projectionimports Renaming-Sdf-Syntax9:1:1exportscontext-free syntaxRenamings \++" Renamings ! Renamings frightg\�" \ " Symbol \(" Renamings \)" ! Symbol\�" \ " Production \(" Renamings \)" ! Production\(" Symbols \)" Symbols \)" ! RenamingsequationsConcatenation of renamings.[1] [��1] ++ [��2] = [��1 ��2]Looking up the renaming of a symbol in a list of renamings.[2] �A([A ) B � �]) = B[3] �A([A 0 ) B � �]) = �A([� �]) otherwise[4] �A([p ) p 0 � �]) = �A([� �])[5] �A([]) = A186



Renamings / 9.1Looking up the renaming of a production in a list of renamings.[6] �p([]) = p[7] �p([p ) p 0 � �]) = p 0[8] �� ! A $([� ! A ) � ! B � �]) = � ! B $[9] �p([p 0 ) p 00 � �]) = �p([� �]) otherwise[10] �p([A ) B � �]) = �p([� �])Abbreviation of a renaming of a list of symbols into another list of symbols.[11] ( ) ) = [][12] (� ) ) = [][13] ( ) �) = [][14] (A � ) B �) = [A ) B] ++ (� ) �)This will be used for the instantiation of a list of formal parameters with a listof actual parameters.9.1.3 NormalizationNow we can de�ne the application of a renaming to a grammar. For each sort Swe de�ne an application function (S) Renamings! S that applies a renamingto constructs of sort S. We start by de�ning the renaming of symbols andproductions. The rest is mainly a distribution of the renamings function overthe constructs building a grammar.module Kernel-Sdf-Renamingimports Renaming-Sdf-Projection9:1:2 Kernel-Sdf-Projection7:3:2exportscontext-free syntax\(" Symbol \)" Renamings ! Symbol\[" Symbol \]" Renamings ! Symbol\(" Symbols \)�" Renamings ! Symbols\(" Production \)" Renamings ! Production\(" Productions \)�" Renamings ! Productions\(" Grammar \)" Renamings ! GrammarequationsRenaming a symbol. If the symbol is de�ned in the renaming it is replaced byits value in the renaming. Otherwise, the renaming is applied recursively to thesubsymbols of the symbol, which is done by the function [ ]�.[1] (A) � = B when �A(�) = B, A 6= B[2] (A) � = [A] � otherwiseRenaming a production works similarly. If the production is de�ned in therenaming it is replaced by its value. Otherwise, its symbols are renamed.[3] (p) � = p 0 when �p(�) = p 0, p 0 6= p[4] (� ! A $) � = (� )� � ! (A) � $ otherwise 187



9 / renaming and modularizationFor all other grammar constructs, renaming is a homomorphism that appliesthe renamings to symbols and productions contained in the structure.Renaming lists of symbols.[5] (� )� � = when � =[6] (�+ �+ )� � = (�+ )� � ++ (� + )� �[7] (A )� � = (A) �Renaming lists of productions.[8] (p )� � = (p) �[9] (p�1 )� � = when p�1 =[10] (p+1 p+2 )� � = (p+1 )� � ++ (p+2 )� �Renaming grammars.[11] (;) � = ;[12] (G1 G2) � = (G1) � (G2) �[13] (syntax p �) � = syntax (p � )� �The application of a renaming to a renaming denotes the composition of therenamings.module Renaming-Sdf-Renamingimports Kernel-Sdf-Renaming9:1:3exportscontext-free syntax\(" Renamings \)" Renamings ! RenamingsequationsA renaming �2 applied to a renaming �1 (�1)�2 denotes the composition of therenamings, i.e., (x)(�1)�2 = ((x)�1)�2. This can be expressed by means of asingle renaming by renaming the targets of �1 with �2 and adding �2 at the endof the list of renamings.[1] ([]) � = �[2] ([A ) B � �]) � = [A ) (B) �] ++ ([� �]) �[3] ([p ) p 0 � �]) � = [p ) (p 0) �] ++ ([� �]) �For each of the extensions of the kernel we have to extend the renaming functionsto the new constructors. See xA.3 for the speci�cation of these extensions.9.1.4 Renaming TreesIf well-formed trees exist over a grammar that is renamed, the trees have to berenamed as well, if they have to be reused in the same context as the renamedgrammar. For example, if equations over a grammar are de�ned, the equations188



Renamings / 9.1must be renamed as well. Therefore, we extend the de�nition of renaming toparse trees.module Renaming-Sdf-Treesimports Kernel-Sdf-Trees7:5:5 CC-Sdf-Trees7:5:6 Basic-Sdf-TreesRegular-Sdf-Trees Kernel-Sdf-Renaming9:1:3Literals-Sdf-Normalization7:4:3exportscontext-free syntax\(" ATerm \)" Renamings ! ATermrnargs(ATermList, ATermList) ! ATermListmktree(Literal) ! ATermchartrees(Symbols) ! ATermListequationsRenaming an application. If the production is de�ned in the renaming, renamethe arguments and then rename the literals in the argument terms according tothe new production.[1] aterm((production(Prod)) �) = Prod 0, Prod 0 6= Prod,(Args) � = Args 0, rnargs(args(Prod 0); Args 0) = Args 00(appl(Prod; Args)) � = appl(Prod 0; Args 00)If the production is not de�ned in the renaming, then only rename the argu-ments.[2] (appl(Prod; Args)) � = appl(Prod; (Args) �) otherwiseRenaming is a homomorphism over the other tree constructors.[3] (n) � = n[4] (amb(Args)) � = amb((Args) �)[5] (Tl) � = [ ] when Tl = [ ][6] ([T]) � = [(T) �][7] ([T; Ts]) � = [(T) �; Ts 0] when [Ts 0] = ([Ts]) �Renaming the arguments.[8] rnargs([ ]; [ ]) = [ ]Insert literals of the new pattern.[9] symbol(�rst([Ts1])) = Lrnargs([Ts1]; Tl2) = mktree(L) : rnargs(rest([Ts1]); Tl2)Skip literals of the old tree.[10] symbol(type(�rst([Ts2]))) = Lrnargs(Tl1; [Ts2]) = rnargs(Tl1; rest([Ts2])) 189



9 / renaming and modularizationCopy layout from old tree to new tree if layout is requested in new pattern.[11] symbol(�rst([Ts1])) = hLAYOUT?-CFi,symbol(type(�rst([Ts2]))) = hLAYOUT?-CFirnargs([Ts1]; [Ts2]) = �rst([Ts2]) : rnargs(rest([Ts1]); rest([Ts2]))Insert empty layout in the new tree.[12] symbol(�rst([Ts1])) = hLAYOUT?-CFi,symbol(type(�rst([Tl2]))) 6= hLAYOUT?-CFirnargs([Ts1]; Tl2) = appl(aterm( ! hLAYOUT?-CFi ); [ ]): rnargs(rest([Ts1]); Tl2)Skip layout of the old tree.[13] symbol(�rst(Tl1)) 6= hLAYOUT?-CFi,symbol(type(�rst([Ts2]))) = hLAYOUT?-CFirnargs(Tl1; [Ts2]) = rnargs(Tl1; rest([Ts2]))In the other cases there is no layout or literal in either list. This means thatit concerns an argument tree that should be copied from the old tree to therenamed tree.[14] rnargs([Ts1]; [Ts2]) = �rst([Ts2]) : rnargs(rest([Ts1]); rest([Ts2]))otherwiseThe function `mktree' constructs a tree for a literal L, by constructing theproduction according to the de�nition in x7.4.3 and by generating the list ofcharacter codes.[15] chars(L) = �, aterm(� ! L ) = Prodmktree(L) = appl(Prod; chartrees(�))From a list of singleton character classes generate a term list of integers repre-senting the character codes.[16] chartrees() = [ ][17] chartrees([c] �) = int(c) : chartrees(�)9.1.5 DiscussionIt would be desirable that renaming preserves well-formedness, i.e., if a treeT is well-formed under some grammer G, it should also be well-formed whenrenamed with some renaming �. That is, we want thatG ` T ) (G)� ` (T )�190



Renamings / 9.1In fact we would like that renaming preserves the structure de�ned by a gram-mar, i.e., renaming the trees generated by a grammar gives the same trees asthose generated by the renamed grammar:(T [[G]])� = T [[(G)�]]Unfortunately, this is not the case for all renamings. If the argument sorts ofa production are renamed using a production renaming, but the sorts are notrenamed independently, the arguments of an application with that productionhave the wrong type after renaming. For instance, the renaming[E "+" E -> E => Set "&" Set -> Set]will change the notation of addition on the sort E into a binary operator & onthe sort Set. Other constructs for sort E will still have type E after renaming,including the arguments of the & operator, which will hence not be well-formed.It is su�cient to require that in such cases the corresponding symbol renamingsare present as well, i.e., the renaming[E => Set E "+" E -> E => Set "&" Set -> Set]does preserve well-formedness.Also the interaction between regular expressions and renamings spoils thepreservation property. For instance, consider the renaming[{Int ","}* => {Int ";"}*]that is intended to rename lists of integers separated by commas into lists sep-arated by semicolons. This will rename all symbols {Int ","}*, but it will notrename the concatenation operators for this sort. The renaming[{Int ","}* => {Int ";"}*{Int ","}* "," {Int ","}* -> {Int ","}*=> {Int ";"}* ";" {Int ";"}* -> {Int ";"}*{Int ","}+ "," {Int ","}* -> {Int ","}+=> {Int ";"}+ ";" {Int ";"}* -> {Int ";"}+{Int ","}* "," {Int ","}+ -> {Int ","}+=> {Int ";"}* ";" {Int ";"}+ -> {Int ";"}+{Int ","}+ "," {Int ","}+ -> {Int ","}+=> {Int ";"}+ ";" {Int ";"}+ -> {Int ";"}+]is a well-formedness preserving renaming that does have the intended e�ect.In all these cases correct renamings can be given that will preserve well-formedness and achieve the intended renaming, but these examples show thatcare has to be taken when writing down renamings. Ideally we would like torestrict the renamings such that the preservation property holds. It might alsobe possible to complete a renaming to guarantee well-formedness preservationas in the examples above. This is a matter for further study. 191



9 / renaming and modularization9.2 AliasesThe regular expressions introduced in x8.2 provide a way to concisely declare anumber of productions without actually having to write them down. A problemwith these regular expressions is that they can become rather large. This isa property that might make their use unattractive. Therefore, we introducesymbol aliases. An alias declaration introduces a short name for a complicatedregular expression. All occurences of the alias are replaced by their meaning.For example, the declarationsaliases{Term ","}* -> Terms{Var ","}* -> VarsSet[(Var "|->" Term)] -> Substintroduce Terms and Vars as aliases for lists of Term and Var, respectively, andSubst as an alias for sets of pairs of variables and terms. This entails that alloperations generated for list constructs also apply to Terms and Vars and alloperations generated for sets apply to Subst.Aliases are de�ned using the renamings of the previous section. An aliasA ! B induces a grammar renaming [B ) A], which is applied to the entiregrammar. Why then introduce this extra feature if we already have renamings?Renamings apply to a �xed grammar. Only the grammar to which the renamingis applied, including all imported grammars, is a�ected. An alias is a renamingof a symbol that also a�ects all modules that import the alias.9.2.1 SyntaxAn alias grammar consists of a list of aliases of the form A ! B that de�ne thesymbol B to be an alias of symbol A.module Alias-Sdf-Syntaximports Kernel-Sdf-Syntax7:3:1exportssorts Alias Aliasescontext-free syntax\aliases" Aliases ! GrammarSymbol \!" Symbol ! AliasAlias� ! Aliasesvariables\al"[0-9 0]� ! Alias\al�"[0-9 0]� ! Alias�\al+"[0-9 0]� ! Alias+9.2.2 ProjectionConcatenation of alias lists. Projection of the aliases and non-alias parts of agrammar.192



Aliases / 9.2module Alias-Sdf-Projectionimports Alias-Sdf-Syntax9:2:1exportscontext-free syntaxAliases \++" Aliases ! Aliases frightg\Al"(Grammar) ! Aliases\Al"(Grammar) ! GrammarequationsThe function `Al' gives all alias declarations of a grammar, `Al' the grammarwithout alias declarations.[1] al�1 ++ al�2 = al�1 al�2[2] Al(aliases al �) = al �[3] Al(G1 G2) = Al(G1) ++ Al(G2)[4] Al(G) = otherwise[5] Al(aliases al �) = ;[6] Al(G1 G2) = Al(G1) Al(G2)[7] Al(G) = G otherwise9.2.3 NormalizationAliases are de�ned by renaming all alias symbols to their de�ned meaning. Thefunction a[[ ]] produces a renaming from the alias declarations in the grammarand applies it to the non-alias parts of the grammar. The alias declarationsare then attached to the renamed grammar. This is done in order to keep thefollowing modular property:a[[G1 G2]] = a[[a[[G1]] a[[G2]]]]This entails that aliases can be replaced before attening a module, after whichthe aliases are still part of the grammar and keep their forward renaming prop-erty.module Alias-Sdf-Normalizationimports Alias-Sdf-Projection9:2:2 Kernel-Sdf-Normalization7:3:3Kernel-Sdf-Renaming9:1:3exportscontext-free syntax\a[[" Grammar \]]" ! Grammarrn(Aliases) ! Renamingssymbols(Aliases) ! SymbolSetequationsReplace all alias symbols by their de�nition by applying a renaming derivedfrom the alias declarations to the non-alias parts of the grammar.[1] a[[G]] = aliases al+ (Al(G)) rn(al+) when Al(G) = al+ 193



9 / renaming and modularization[2] a[[G]] = G otherwiseBuild a renaming from a list of aliases. The target B of the alias declarationA ! B is renamed to the source A.[3] rn() = [][4] rn(A ! B al �) = [B ) A] ++ rn(al �)The symbols occurring in an alias declaration.[5] symbols(aliases al �) = symbols(al �)[6] symbols(al �) = fg when al � =[7] symbols(A ! B al �) = fA Bg [ symbols(al �)Merging and ordering of grammars.[8] aliases = ;[9] aliases al�1 3 aliases al�2 = haliases al�1 al�2, ;i[10] syntax p � 3 aliases al � = haliases al �, syntax p �iAliases themselves can also be subject to renamings.module Alias-Sdf-Renamingimports Kernel-Sdf-Renaming9:1:3 Alias-Sdf-Projection9:2:2exportscontext-free syntax\(" Aliases \)a" Renamings ! AliasesequationsRenaming of aliases.[1] (aliases al �) � = aliases (al � )a �[2] (al � )a � = when al � =[3] (A ! B )a � = (A) � ! (B) �[4] (al+1 al+2 )a � = (al+1 )a � ++ (al+2 )a �

194



Modules / 9.39.3 ModulesIn this section we introduce a module framework for grammars to support man-agement and reuse of parts of the grammar of a language. A modular de�nitionconsists of a list of named modules. Modules can be reused in other modulesby means of imports. The body of a module is a list of exported and hiddengrammars. Export and hiding provide a means to control what is visible from amodule and what is local to that module. Hidden syntax is useful when the syn-tax de�nition formalism is coupled to a semantics formalism for the speci�cationof the semantics of languages. Hidden syntax then plays the role of auxiliaryfunctions. Since imports are abbreviations for grammars, an import can behidden or exported. Modules can be parameterized by a list of symbols. Animport can instantiate these parameters, although this is not required. Parame-terization is an abbreviation for a renaming. When a module M [�] is importedas M [�], the formal parameters [�] are renamed into the actual parameters [�].An import can also be subject to a renaming of symbols and productions.Example 9.3.1 (Aliases and Renaming) The following module de�nes thesyntax of tables. A table is de�ned as an alias for a set of mappings from keysto values. The value assigned to a key can be looked up in a table using theaccess function lookup.module Tablesexportssorts Key Value TablealiasesSet[(Key "|->" Value)] -> Tablecontext-free syntaxlookup(Table, Key) -> ValueBelow we transform tables into mappings from variables to terms, thus obtaininga representation for substitutions. This is achieved by renaming the sorts inmodule Tables such that variables become the keys and terms the values intables.module Substitutionsimports TermsTables[Key => Var Value => Term Table => Substlookup(Table, Key) -> Value=> Subst "[" Var "]" -> Term ]exportscontext-free syntaxSubst "(" Term ")" -> TermThe additional function applies a substitution to all variables in a term. 2Example 9.3.2 (Map) Using renaming a kind of polymorphic higher-orderfunctions can be expressed. The following module de�nes a function that maps195



9 / renaming and modularizationa function over the elements of a list. The function is de�ned for a given A andB that can be instantiated as needed.module Map[A B]exportssorts A Bcontext-free syntax(A => B) "*" "(" A* ")" -> B*The disadvantage of this kind of polymorphism is that for each instance of apolymorphic function, an explicit module import has to be done. 2Example 9.3.3 (Parameterized Modules) The following module de�nes thesyntax of a list of conditional equations preceded by the keyword `equations'.This is the syntax of the equations part of an ASF+SDF module, which isparameterized by the syntax of some language. For each sort, productionsde�ning the syntax of equations over that sort are de�ned. Note the use of theconstrained iteration operator to de�ne the bar (Implies) between conditionsand conclusion as at least 3 equal signs.module Equationsexportssorts Tag TagId CondEquation Equation ImpliesCondition Equationslexical syntax{[\=]}3+ -> Implies[a-z0-9A-Z\-]+ -> TagIdaliases{Condition ","}+ -> Conditionscontext-free syntax"equations" CondEquation* -> EquationsTag (Conditions Implies)? Equation -> CondEquationTag Equation "when" Conditions -> CondEquation"[" TagId? "]" -> TagNext we de�ne generic syntax for sorts Equation and Condition as follows:module X-Equations[X]exportssorts X Equation Conditioncontext-free syntaxX "=" X -> EquationX "=" X -> ConditionX "!=" X -> ConditionTo de�ne the syntax of the equations part of a moduleM , the ASF+SDF Meta-Environment generates a moduleM-Equations that de�nes the syntax of theseequations (Klint, 1993). This module imports the language independent syntax196



Modules / 9.3of equations and de�nes equations for the sorts declared in the module. Withthe parameterized module X-Equations we can express this by a module thatcontains an import for each declared sort. For instance, for Boolean-Equationswe get the following module:module Booleans-Equationsimports BooleansEquationsX-Equations[Bool]Observe that the sorts Condition and Equation are declared in two di�erentmodules. This is not problematic when these modules meet, because duplicatede�nitions are merged. 29.3.1 SyntaxA modular syntax de�nition consists of a series of named module declarations.A module declaration consists of a list of sections, which are either exportsor hiddens. A module name consists of a module identi�er and an optionallist of parameters. Module identi�ers can contain slashes to enable the use ofdirectory names in module names, e.g., sdf/kernel/Syntax. A module canimport any number of other modules. An import consists of a module namewith optionally a renaming applied to it. An import of a module M denotesthe grammar declared in module M . An import can be contained in one of theexports or hiddens sections. In the latter case all syntax imported through thatmodule is hidden and thus not exported from the module. Imports can alsooccur at the start of a module, outside any exports or hiddens section. In thiscase the imports are exported.module Modular-Sdf-Syntaximports Kernel-Sdf-Syntax7:3:1 Renaming-Sdf-Syntax9:1:1exportssorts ModuleId ModuleName Import Imports Section Sections ModuleDe�nition ImpSectionlexical syntax[A-Za-z0-9 n�]+ ! ModuleWord\="ModuleWord ! ModuleDirModuleWord ModuleDir+ ! ModuleIdModuleDir+ ! ModuleIdcontext-free syntaxModule� ! De�nition\module" ModuleName ImpSection� Sections ! Module\exports" Grammar ! Section\hiddens" Grammar ! SectionSection� ! SectionsModuleId ! ModuleNameModuleId \[" Symbols \]" ! ModuleNameid(ModuleName) ! Attribute 197



9 / renaming and modularization\imports" Imports ! ImpSectionImpSection ! GrammarImport� ! ImportsModuleName ! ImportModuleName Renamings ! Import\(" Import \)" ! Import fbracketgvariables\Mid"[0-9 0]� ! ModuleId\M "[0-9 0]� ! ModuleName\s"[0-9 0]� ! Section\s"\�"[0-9 0]� ! Section�\s"\+"[0-9 0]� ! Section+\m"[0-9 0]� ! Module\m�"[0-9 0]� ! Module�\m+"[0-9 0]� ! Module+\d"[0-9 0]� ! De�nition\i"[0-9 0]� ! Import\i"\�"[0-9 0]� ! Import�\i"\+"[0-9 0]� ! Import+\is"[0-9 0]� ! ImpSection\is�"[0-9 0]� ! ImpSection�9.3.2 ProjectionProjection functions: �M (d) yields the body of the module named M . `Exp'yields the exported part of a module and `Hid' yields the hidden part of amodule.module Modular-Sdf-Projectionimports Modular-Sdf-Syntax9:3:1 Booleans Kernel-Sdf-Projection7:3:2Modular-Sdf-Renaming9:3:4exportscontext-free syntaxImport \2" Imports ! BoolSections \++" Sections ! Sections fassocgImports \++" Imports ! Imports fassocg\�" \ " ModuleName \(" De�nition \)" ! Sections\Exp"(Sections) ! Grammar\Hid"(Sections) ! GrammarequationsMembership of a list of imports.[1] i 2 i�1 i i�2 = >[2] i 2 i � = ? otherwiseConcatenation of section and imports lists.[3] s�1 ++ s�2 = s�1 s�2198



Modules / 9.3[4] i�1 ++ i�2 = i�1 i�2Lookup of a module by its name in a list of modules. If a module name matchesthe module name searched for, its list of sections is yielded. If a parameterizedmodule is imported without specifying any actual parameters, the parametersare left uninstantiated. If a list of actual paramters is given, these are used torename the formal parameters into the actual parameters. The function ( ) )constructs a renaming from the formal parameters to the actual parameters ofa parameterized module. If no modules are found the empty list of sections isyielded.[5] �M(module M s � m �) = s � ++ �M(m �)[6] �Mid(module Mid[�] s � m �) = s � ++ �Mid(m �)[7] �Mid[�](module Mid[�] s � m �) = (s �) (� ) �) ++ �Mid[�](m �)[8] �M(module M 0 s � m �) = �M(m �) otherwise[9] �M() =Exported grammars from a list of sections.[10] Exp() = ;[11] Exp(s+1 s+2 ) = Exp(s+1 ) Exp(s+2 )[12] Exp(exports G) = G[13] Exp(hiddens G) = ;Hidden grammars from a list of sections.[14] Hid() = ;[15] Hid(s+1 s+2 ) = Hid(s+1 ) Hid(s+2 )[16] Hid(exports G) = ;[17] Hid(hiddens G) = G9.3.3 NormalizationWe de�ne the semantics of the modular constructs introduced above by meansof a normalization function that yields the attening of a module in a modularsyntax de�nition by replacing each import by the body of the module it refers to.Hidden productions are renamed by attaching the name of the hiding module.Since all productions occurring in a hiddens do not occur in another hiddenssection (they should have been exported) it can never occur that two suchrenamed productions are imported into the same module. A consequence ofproduction merging in this case is that an exported function becomes hidden ifit is also in the hiddens part of the module.We de�ne the function m[[d]](M) that yields the grammar corresponding tomodule M in the de�nition d. 199



9 / renaming and modularizationmodule Modular-Sdf-Normalizationimports Modular-Sdf-Projection9:3:2 Modular-Sdf-Renaming9:3:4Kernel-Sdf-Normalization7:3:3 Grammar-Projectionexportscontext-free syntax\m[[" De�nition \]]" \(" ModuleName \)" ! Grammarhide(ModuleName, Grammar) ! Grammarhide(ModuleName, Productions) ! Productionshiddenssorts IGcontext-free syntax\<" Imports \;" Grammar \>" ! IGimp \[[" De�nition \]]" \(" Imports \;" Import \)" ! IGims \[[" De�nition \]]" \(" Imports \;" Imports \)" ! IGgra \[[" De�nition \]]" \(" Imports \;" Grammar \)" ! IGequationsNormalization of order of grammars.[1] imports = ;[2] imports i�1 3 imports i�2 = himports i�1 i�2, ;i[3] G 3 imports i � = himports i �, Gi otherwiseNormalization of module sections. Exports and hiddens sections can be merged.[4] module M is � is s � = module M is � exports is s �[5] s�1 exports G1 exports G2 s�2 = s�1 exports G1 G2 s�2[6] s�1 hiddens G1 hiddens G2 s�2 = s�1 hiddens G1 G2 s�2[7] s�1 hiddens G1 exports G2 s�2 = s�1 exports G2 hiddens G1 s�2The semantics of a module named M in a de�nition d is expressed by m[[d]](M)and is the composition of the exported and hidden grammars of moduleM withall imports replaced by the exported grammars of the modules they refer to.[8] �M(d) = s �, gra[[d]](; Hid(s �)) = hi�1, G1i, gra[[d]](i�1; Exp(s �)) = hi�2, G2im[[d]](M) = G2 hide(M; G1)The function `hide' marks all productions in the hiddens part of a module withthe module name by attaching the attribute id(M) to it.[9] hide(M; ;) = ;[10] hide(M; G1 G2) = hide(M; G1) hide(M; G2)[11] hide(M; syntax p �) = syntax hide(M; p �)[12] hide(M; G) = G otherwise[13] hide(M; � ! A $) = � ! A $ ++ fid(M)g[14] hide(M; ) =[15] hide(M; p+1 p+2 ) = hide(M; p+1 ) ++ hide(M; p+2 )The function `gra' expands all the imports in a grammar. It returns a structurehi�;Gi, which denotes a attened grammar with the list of imports i� that were200



Modules / 9.3expanded to atten the grammar. This list is passed on to the rest of theattening process in order to prevent multiple imports of the same module.This is important in particular in the presence of cyclic imports.[16] gra[[d]](i�1; G1) = hi�2, G 01i, gra[[d]](i�2; G2) = hi�3, G 02igra[[d]](i�1; G1 G2) = hi�3, G 01 G 02i[17] gra[[d]](i�1; imports i�2) = ims[[d]](i�1; i�2)[18] gra[[d]](i �; G) = hi �, GiotherwiseThe function `ims' yields the attened grammars for a list of imports.[19] ims[[d]](i �; ) = hi �, ;i[20] imp[[d]](i�1; i) = hi�3, G1i, ims[[d]](i�3; i�2) = hi�4, G2iims[[d]](i�1; i i�2) = hi�4, G1 G2iThe function `imp' yields the attened grammar associated with the exportedgrammar of an import. The �rst list of imports denotes the imports that arealready expanded. If a module was already imported it is not imported again.This is a protection against cyclic imports.[21] G = if M 2 i � then ; else Exp(�M(d)) �imp[[d]](i �; M) = gra[[d]](i � M; G)[22] G = if M � 2 i � then ; else (Exp(�M(d))) � �imp[[d]](i �; M �) = gra[[d]](i � M �; G)As we will see in the next section, the renaming � that is applied to the exportedpart of the imported module M in the last equation above is also applied to theimports of that module and hence is applied recursively to all modules importedvia M .9.3.4 RenamingWe extend the de�nition of renaming to renaming of module sections and im-ports. This includes the renaming of imports, and hence the renaming of re-namings applied to imported modules.module Modular-Sdf-Renamingimports Renaming-Sdf-Renaming9:1:3 Modular-Sdf-Syntax9:3:1Modular-Sdf-Projection9:3:2exportscontext-free syntax\(" Sections \)" Renamings ! Sections\(" Imports \)" Renamings ! Imports 201



9 / renaming and modularizationequationsRenaming sections.[1] (s �) � = when s � =[2] (exports G) � = exports (G) �[3] (hiddens G) � = hiddens (G) �[4] (s+1 s+2 ) � = (s+1 ) � ++ (s+2 ) �Renaming a list of imports implies applying the renaming to all imported mod-ules, i.e., attaching the renaming to each module name in the list of imports.[5] (imports i �) � = imports (i �) �[6] (M) � = M �[7] (i �) � = when i � =[8] (i+1 i+2 ) � = i+3 i+4 when i+3 = (i+1 ) �, i+4 = (i+2 ) �If the imported module has already a renaming attached to it, the new renamingis applied to the �rst, yielding the composition of the two renamings.[9] (M �1) �2 =M (�1) �29.3.5 DiscussionThe modularization presented here is an extension with symbol parameters,import renamings and hidden imports of the modularization of ASF+SDF asimplemented in the ASF+SDF Meta-Environment (Klint, 1993). The de�nitionhere is a pure `textual' inclusion semantics of modularization. Hendriks (1991)describes both a textual normalization semantics and an incremental semanticsfor modular constructs without renamings and hidden imports. The incremen-tal implementation of modularization in the Meta-Environment becomes com-plicated in the presence of renamings, since items are created on the y andcan no longer be associated with a module. We have not addressed the issue ofincremental parser generation and modular parser generation in a setting withrenamings.We deviate from the original design of ASF in that we do not incorporatethe `origin rule' that forbids identi�cation of names that originate from di�er-ent modules (Bergstra et al., 1989b). This style forbids to have two moduleswith partly overlapping signatures, e.g., both introducing the same sort or func-tion, that are imported in the same module, even if the overlap is intentional.The de�nition here is completeley liberal in this respect. Productions that areimported via di�erent routes are identi�ed if they are the same.In x9.1 we saw that renamings are not guaranteed to preserve well-formednessof trees. A further study of modular properties of grammars in the line of modulealgebra (Bergstra et al., 1990) should give more insight into properties of goodmodularization. Some topics for study are: properties of trees and languagesunder renaming, ambiguity caused by union, interaction of regular expressionsand renamings, modular properties of reject productions.202



10The Syntax De�nition FormalismSDF2This chapter presents the assembly of the syntax de�nition formalism SDF2 fromthe features designed in previous chapters. This is mainly a matter of de�ningcollecting modules that import the modules de�ned earlier. However, somefeatures interfere. In some cases the normalization functions have to be extendedto cover constructs introduced for other features. In other cases features haveto be extended such that the orthogonality of another feature is maintained.The chapter concludes with a comparison of SDF2 to SDF and a discussion ofanomalies and possible improvements to the formalism.10.1 SDF2Now we put the pieces together and de�ne the syntax de�nition formalism SDF2,which is a generalization of SDF (Heering et al., 1989). It covers all featuresavailable in SDF and adds several new ones. Furthermore, up to some smalladaptations, SDF is textually (although not structurally) a subset of SDF2.This means that existing SDF de�nitions can be used almost literally as SDF2de�nitions. The di�erences can be translated automatically by means of a mi-gration tool.The combination of features described earlier is achieved basically by combin-ing them by means of imports into collecting modules. For each aspect of thede�nition, such as syntax, projection and normalization, a collecting module isde�ned. Here we show the collecting modules for the syntax and normaliza-tion of SDF2. The other modules can be found in Appendix A.4. Althoughwe have tried to de�ne features orthogonally, some interference between themis unavoidable. For instance, when we extend the syntax of symbols, normal-ization functions that deal with symbols are a�ected and have to be extendedaccordingly.10.1.1 SyntaxThe syntax of SDF2 is simply the collection of the syntax of all features in-troduced sofar. The syntax is extended with lexical and context-free priorities203



10 / the syntax definition formalism sdf2and restrictions, which arise as a result of the combination of Basic-Sdf withPriority-Sdf and Restriction-Sdf. The constructor `de�nition' collects a list ofmodules into a single SDF de�nition.The symbols hStarti and hSTARTi serve to de�ne grammars with a singlestart symbol. In the normalization below productions will be added such thathSTARTi is the union of all sorts of the grammar. The symbol hStarti is usedto describe �les that consist of a string over the language of hSTARTi followedby the end of �le character.In the Label extension a symbol can be labeled with a literal using the syntaxL : A. This extension is not further de�ned here. The priorities section isextended to deal with this extra symbol constructor.module Sdf2-Syntaximports Kernel-Sdf-Syntax7:3:1 Basic-Sdf-Syntax8:3:1 Modular-Sdf-Syntax9:3:1Regular-Sdf-Syntax8:2:1 Priority-Sdf-Syntax8:1:1 CC-Sdf-Syntax7:4:2Sorts-Sdf-Syntax7:4:1 Literals-Sdf-Syntax7:4:3 Label-Sdf-SyntaxRestrictions-Sdf-Syntax8:4:1 Alias-Sdf-Syntax9:2:1exportssorts SDFcontext-free syntax\hSTARTi" ! Symbol\hStarti" ! Symbol\lexical" \priorities" Priorities ! Grammar\context-free" \priorities" Priorities ! Grammar\lexical" \restrictions" Restrictions ! Grammar\context-free" \restrictions" Restrictions ! Grammar\de�nition" De�nition ! SDFprioritiesSymbol \j"Symbol ! Symbol > Literal \:"Symbol ! Symbol10.1.2 NormalizationWe de�ne the normalization function that normalizes a syntax de�nition byapplying the normalization functions of the individual features. Here we haveto deal with interaction between the normalization functions for the separatefeatures and the constructs added to the formalism in other features.module Sdf2-Normalizationimports Sdf2-Syntax10:1:1 Sdf2-ProjectionA:4 Sdf2-RenamingA:4Basic-Sdf-Normalization8:3:2 Modular-Sdf-Normalization9:3:3Priority-Sdf-Normalization8:1:3 Regular-Sdf-Normalization8:2:2Literals-Sdf-Normalization7:4:3 CC-Sdf-Normalization7:4:2Sorts-Sdf-Normalization7:4:1 Sorts-Sdf-Projection7:4:1Restrictions-Sdf-Normalization8:4:3 Alias-Sdf-Normalization9:2:3exportscontext-free syntaxnormalize \[[" SDF \]]" \(" ModuleName \;" Symbol \)" ! Grammar204



SDF2 / 10.1topsorts \[[" Grammar \]]" \(" Symbol \)" ! Grammartopsorts(Symbol, Symbols) ! ProductionsequationsThe normalization of an SDF2 de�nition is de�ned by the following equation.The function `normalize' is parameterized with a module name denoting thetop module to be normalized and a sort denoting the topsort of the de�nition.The de�nition is normalized by �rst expanding module M by means of function`m'. Then the normalization functions `b' (Basic), `a' (Alias), `r' (Regular), `p'(Priorities), `l' (Literals) and `k' (Kernel) are applied to the resulting grammar.The function `topsorts', de�ned below, is used to add special productions forthe top sorts of the de�nition and to remove productions not reachable fromthose top sorts.[1] k[[l[[p[[r[[topsorts[[a[[b[[m[[d]](M)]]]]]](A)]]]]]]]] = Gnormalize[[de�nition d]](M; A) = reachable(fhStartig; G)The function `topsorts' adds a special production for the symbol hStarti, whichdeclares that a text over the grammar is a string of sort A followed by thecharacter representing the end of �le. For each declared sort in the de�nition aproduction is added that de�nes that a text can be a string of that sort whichstarts and ends with layout.[2] G 0 = syntax A [\EOF] ! hStarti ++ topsorts(A; S(G))topsorts[[G]](A) = G 0 G[3] topsorts(A; �+ �+) = topsorts(A; �+) ++ topsorts(A; � +)[4] topsorts(A; ) =[5] topsorts(A; B) = hLAYOUT?-CFi hB-CFi hLAYOUT?-CFi ! A10.1.3 InteractionSeveral of the normalization functions are underde�ned, i.e., the full SDF2 for-malism contains more constructors than the extension for which they have beende�ned. Therefore, we must extend these functions accordingly.exportscontext-free syntax\<" Priorities \-LEXp" \>" ! Priorities\<" Priorities \-CFp" \>" ! Priorities\<" Restrictions \-LEX" \>" ! Restrictions\<" Restrictions \-CF" \>" ! Restrictionshiddensvariables\L" ! LiteralequationsThe normalization function for regular expressions must be extended to thesymbol constructors added in other extensions. The �rst equations express that205



10 / the syntax definition formalism sdf2sorts, character classes, literals and the symbols LAYOUT, hSTARTi and hStartido not generate any productions.[6] r[[S ]] = ; [7] r[[LAYOUT]] = ;[8] r[[cc]] = ; [9] r[[hSTARTi]] = ;[10] r[[L]] = ; [11] r[[hStarti]] = ;The following equations de�ne that the productions generated for some symbolA should be transformed into productions for lexical (context-free) productionsif a lexical (context-free) version of the symbol occurs. This entails that �rstthe productions for A are generated by the recursive call and that these aretransformed by the h -LEXi (h -CFi) function.[12] r[[hA-LEXi]] = hr[[A]]-LEXi[13] r[[hA-CFi]] = hr[[A]]-CFi[14] r[[hA-VARi]] = r[[A]]This is an example of the context-sensitivity of the generation of productionsfrom symbols. The meaning of hId � -CFi is di�erent from that of hId � -LEXi.Basic Literals and character classes do not need the h -LEXi or h -CFi con-structor, because they are lexical by de�nition[15] hcc-LEXi = cc [16] hcc-CFi = cc [17] hcc-VARi = cc[18] hL-LEXi = L [19] hL-CFi = L [20] hL-VARi = LBasic + Priorities Equations for the normalization of lexical and context-free priorities that were added at the level of SDF2.[21] G1 = context-free priorities pr �, G2 = context-free syntax p �G1 3 G2 = hcontext-free syntax p �, context-free priorities pr �i[22] G1 = context-free priorities pr �, G2 = lexical syntax p �G1 3 G2 = hlexical syntax p �, context-free priorities pr �i[23] G1 = context-free priorities pr�1, G2 = context-free priorities pr�2G1 3 G2 = hcontext-free priorities pr�1; pr�2, ;iContext-free priorities are priority declarations for context-free productions andare abbreviations of normal priorities in the same way that context-free syntaxis an abbreviation for a certain style of normal syntax. The productions in thepriorities sections are thus treated with the same h -CFi functions as context-freeproductions.[24] baux[[context-free priorities pr �]] = hpriorities pr �-CFi[25] hpriorities pr �-CFi = priorities hnorm[[pr �]]-CFpi[26] hpr �-CFpi = when pr � =[27] hpr+1 ; pr+2 -CFpi = hpr+1 -CFpi ++ hpr+2 -CFpi206



SDF2 / 10.1[28] hp1> p2-CFpi = hp1-CFi> hp2-CFi[29] hp1 as p2-CFpi = hp1-CFi as hp2-CFiSimilarly for lexical priorities.[30] baux[[lexical priorities pr �]] = hpriorities pr �-LEXi[31] hpriorities pr �-LEXi = priorities hnorm[[pr �]]-LEXpi[32] hpr �-LEXpi = when pr � =[33] hpr+1 ; pr+2 -LEXpi = hpr+1 -LEXpi ++ hpr+2 -LEXpi[34] hp1> p2-LEXpi = hp1-LEXi> hp2-LEXi[35] hp1 as p2-LEXpi = hp1-LEXi as hp2-LEXiBasic + Restrictions[36] baux[[lexical restrictions restr �]] = restrictions hrestr �-LEXi[37] hrestr �-LEXi = when restr � =[38] hrestr+1 restr+2 -LEXi = hrestr+1 -LEXi ++ hrestr+2 -LEXi[39] h� {/{ cc-LEXi = h�-LEXsi {/{ cc[40] baux[[context-free restrictions restr �]] = restrictions hrestr �-CFi[41] hrestr �-CFi = when restr � =[42] hrestr+1 restr+2 -CFi = hrestr+1 -CFi ++ hrestr+2 -CFi[43] h {/{ cc-CFi = {/{ cc[44] hA � {/{ cc-CFi = hA-CFi � {/{ cc when h� {/{ cc-CFi = � {/{ ccLabels[45] r[[L : A]] = r[[A]][46] hL : A-LEXi = L : hA-LEXi[47] hL : A-CFi = L : hA-CFi[48] hL : A-VARi = L : hA-VARiHiding Productions[49] hide(M; context-free syntax p �) = context-free syntax hide(M; p �)[50] hide(M; lexical syntax p �) = lexical syntax hide(M; p �)[51] hide(M; variables p �) = variables hide(M; p �)[52] hide(M; lexical variables p �) = lexical variables hide(M; p �)Aliases[53] G1 = aliases al �, G2 = sorts �G1 3 G2 = hsorts �, aliases al �i 207



10 / the syntax definition formalism sdf210.2 Comparison to SDFSDF2 was developed as a generalization of SDF (Heering et al., 1989). Webriey list the di�erences between the two formalisms.10.2.1 SemanticsSDF de�nes the semantics of a syntax de�nition by means of mappings to otherformalisms. The lexical syntax is mapped to a regular grammar. The context-free syntax is mapped to a context-free grammar. From the entire de�nition a�rst-order many-sorted algebraic signature is derived. A parse tree for a stringaccording to the grammar is translated to a term or abstract syntax tree overthe signature. In SDF2 parse trees are de�ned by means of a well-formednesspredicate on ATerms based directly on (the normal form of) a syntax de�nition.The strings of the language de�ned by a grammar are obtained via the functionyield. No external formalism is used to de�ne trees. In this way the notions ofgrammar and signature that were related via mappings in SDF are completelyintegrated in SDF2.10.2.2 Lexical and Context-free SyntaxSDF integrates lexical syntax and context-free syntax in one formalism. How-ever, this integration is only at the level of the formalism; on the level of theimplementation these are separated. The lexical syntax is mapped to a regulargrammar (hence the speci�cation of the lexical syntax should also be regular).The context-free syntax is translated to a context-free grammar. In SDF2 theintegration of lexical and context-free syntax is completed. All other featuresare orthogonal with respect to lexical and context-free syntax. For instance,character classes and regular expressions can be used in exactly the same wayin lexical productions and context-free productions.10.2.3 Lexical DisambiguationSDF has several built-in lexical disambiguation rules that are applied to thetoken stream before tokens are passed to the parser. SDF2 has no built-in lex-ical disambiguation rules, but provides reject productions to express the preferliterals rule and follow restrictions to express longest match disambiguation.10.2.4 Character ClassesIn SDF the syntax of character classes is de�ned lexically. In SDF2 characterclasses are de�ned by means of context-free constructors. This makes the def-inition of normalization of character classes much easier. The di�erences withcharacter classes in SDF are: numeric characters have a decimal interpretationinstead of an octal interpretation, there is no syntactic limit to the range ofnumeric characters, all characters except letters and digits have to be escapedusing a slash. In SDF2 character classes have a numeric interpretation, that208



Discussion and Concluding Remarks / 10.3is, each character class is normalized to an ordered and non-overlapping list ofnumeric characters and ranges of characters.10.2.5 ListsSDF only provides list sorts that can be used in the left-hand sides of produc-tions. Furthermore, lists are not orthogonally de�ned. In the lexical syntaxno iteration with separator is provided. In SDF only sorts can be used on theright-hand side of a production. This means that list sorts cannot be the resultof functions. In order to de�ne a function with a list as result, a new sort has tobe introduced into which the list sort is injected. Furthermore, to concatenatethe lists that result from a function a concatenation function should be de�ned.SDF2 provides an expressive set of regular expressions that are treated as�rst-class citizens. Regular expressions can be used where ever any anothersymbol can be used. In general, all symbols that can be used in the left-handside of a production can also be used as output symbols.10.2.6 PrioritiesThe priorities declarations of SDF2 are the same as in SDF with the followingexceptions: No abbreviations of productions in priorities are supported becauseof the problematic semantics in a setting with modules. No <-chains are pro-vided. The implementation does not provide the multi-set �lter interpretationof priorities.10.2.7 ReuseSDF does not provide renamings, module parameterization, hidden imports,and aliases.10.3 Discussion and Concluding RemarksWe have presented the modular design of a family of syntax de�nition for-malisms. The result is a uniform formalism for syntax de�nition designed forextensibility. A guiding principle in the design is the orthogonality of the fea-tures with respect to one another. As as consequence it is easy to replace afeature by a variant or to add a new feature without a�ecting the design andimplementation of all other features.10.3.1 Parser GenerationThe direct motivation for this work was the speci�cation of a parser generator forSDF. Many of the techniques presented in this chapter were originally developedfor the translation of SDF to intermediate languages like context-free and regulargrammars as prescribed by the SDF reference manual (Heering et al., 1989).Gradually it became clear that the di�culty of this project was due to themonolithic design of SDF. The features presented in this chapter are combined209



10 / the syntax definition formalism sdf2in the formalism SDF2 that is intended to replace SDF. The speci�cation of aparser generator for SDF2 was easier due to the uniform abstract syntax andelimination of cases by normalization. The tables generated by the generatorare interpreted by the generic scannerless generalized-LR parser described inChapter 3.10.3.2 DisambiguationPriorities are interpreted as a well-formedness requirement on parse forests,which could be operationalized as a �lter on parse forests as prescribed byHeering et al. (1989). This approach can be extended to other disambiguationmethods as described in Chapter 4.We have provided some features for disambiguation of ambiguous context-freegrammars. There remain a large number of ambiguities that can not be solvedwith these mechanisms. Some more advanced disambiguation methods are de-scribed in Klint and Visser (1994). Here we list some ideas for improvements ofthe current scheme.The priority relation > on productions does not allow a distinction betweenthe arguments of the productions to which it applies. In several cases it wouldbe useful to restrict the relation to certain arguments. For instance, the prioritydeclaration T T -> T > "let" V "=" T "in" T -> Tdoes correctly forbid the usage of a let expression as the �rst argument of anapplication. However it also forbids the usage of let as the last argument of anapplication, for which there is no reason. An extension of the notation could beT T -> T {1}> "let" V "=" T "in" T -> Tto declare the desired disambiguation. There would be no implementation prob-lems with such an extension.A case for non-standard disambiguation is in ambiguous equations. In x9.3we gave as an example the speci�cation of the syntax of conditional equations.It can occur that equations are ambiguous due to injections. If a symbol A isinjected in B, then an equation over two A expressions can be interpreted bothas A and B equations. A possible interpretation of such an ambiguity is to takeboth possibilities. This is done in the de�nition of multi-level algebraic speci�-cations in Part III, where ambiguous equations can occur due to overloading offunctions.In the implementation of SDF in the ASF+SDF Meta-Environment an un-documented disambiguation method is used. As a simpli�cation of the multi-setordering, trees with fewer injections are preferred over trees with more injec-tions. Such a method is needed to disambiguate conditions of equations. Thismethod has not been implemented as part of the SDF2 tools, but can be addedas a post-parse �lter without problems.We have de�ned follow restrictions and reject productions to express lexicaldisambiguation rules. We omitted the de�nition of these methods as an ex-tension of the well-formedness predicate on parse trees. See Chapter 3 for a210



Discussion and Concluding Remarks / 10.3discussion of the semantics of these methods and for a discussion of automaticlexical disambiguation.10.3.3 RenamingModules associate a name with a grammar. Grammars can be combined bymodule imports. Export and hiding provide control over visibility of grammars.New with respect to the modularization of SDF are renamings and hidden im-ports. In the current de�nition of renaming productions, only the literal skele-ton of the production can be changed, but the order of the arguments staysthe same. Sometimes it is desirable to change the syntax of a production andalso make a permutation of the arguments. A notation for such permutationsshould be devised by means of some kind of indexing. The problem with such anotation is that the current de�nition reuses the syntax of productions literallyin the de�nition of renamings. Changing the syntax of productions will thus beapplicable everywhere. The label facility (see below) could be used for this pur-pose. Unfortunately, renamings are not guaranteed to preserve well-formednessof parse trees. Further study is needed to �nd a set of su�cient requirementson renamings that do guarantee well-formedness.10.3.4 LabelsA feature that has not discussed are labels. Labels are intended to be usedas `�eld names' of a record. For instance, consider the following productionde�ning the syntax of assignments in an imperative language:var : Var ":=" value : Exp -> Stat {cons(assign)}The two arguments are labeled with var and value, respectively. From thisinformation we can derive the following syntax for projection functions basedon the �eld names:Stat "." var -> VarStat "." value -> ExpThis should be accompanied by the the de�ning equations for these functions.10.3.5 Derived SyntaxRegular expressions are considered as name constructors that are used to makenew names out of existing ones. A normalization function adds canonical pro-ductions de�ning the regular operators. For instance, A? denotes an optionalA and is de�ned by the productions A ! A? and ! A?. However, there is norestriction on the use of these name constructors. Other de�ning productionscan be added by the user. In the context of algebraic speci�cation this meansfor instance that users can specify functions that have lists (A�) as result.Regular expressions are an example of derived syntax: Given some symbolor even production in the grammar, other productions are derived. Many otherapplications of derived syntax could be useful. 211



10 / the syntax definition formalism sdf2Sometimes it is useful to explicitly indicate empty constructs and injections.This could be accommodated by generating syntax for explicitly matching injec-tion functions and �-functions, i.e., if A -> B is a production then also "injA-B"(A) -> B Similarly for �, if -> A a production, then also "emptyA" -> A.These constructors should of course match with their origins. This can be doneby translating these functions internally to the real injection or � function. SeeDinesh (1995) for some interesting remarks on injections in ASF+SDF.A structure editor provides facilities to manipulate sentential forms. Thisrequires the speci�cation of the syntax of symbol placeholders. For each symbolA that is not a literal add a production "<A>" -> A.Another case of this kind is the generation of explicit type casts S ":" "S"-> S fcastg (like bracket attribute) to constrain the type of an overloadedentity. This would be similar to the no-operator attribute in SDF.It would be even better to make syntax derivation user-de�nable by providingschemas such as discussed above.10.3.6 Polymorphic SyntaxThe de�nition of regular expressions by introducing new productions is an in-stance of second order quanti�cation. The generalization of this approach totwo-level grammars in Chapter 15 provides the syntactic counterpart of thetwo-level speci�cations in Meinke (1992a) and the multi-level speci�cations inPart III. Generic productions are written as production schemata. The syntaxof symbol constructors is described by means of a second level grammar.10.3.7 Dynamic SyntaxAnother open problem is the formal description of languages with an extensiblesyntax. Programs in such languages can contain grammars that de�ne partof the syntax of the program itself. An example of extensible syntax is thesyntax of equations in ASF+SDF. Several other instances exist, e.g., Cardelliet al. (1994), and Vittek (1994) (Elan). All these approaches treat the meta-language and object language di�erently. A formal approach to this problemwould specify the syntax of the base language and the grammars it can specifyand the lifting of these grammars to meta-level grammars.10.3.8 Design MethodologyWe have presented a large speci�cation. We approached this using a rigorousmodularization of the speci�cation in a matrix of modules. For each featurethe syntax and tools are described in separate modules. In this way it becomesfeasible to exibly include and exclude parts of a language de�nition. Someparts of the speci�cation such as the ATerm encoding are not very interesting.It would be better if those parts could be generated using a simple rule.The main technique we have applied is that of de�nition of features by nor-malization, i.e., transformation to a subset of the language. The great advantage212



Discussion and Concluding Remarks / 10.3of normalization is that many features can be provided to enhance the expres-siveness of the language while de�ning the semantics of the formalism on asmall set of kernel features in which the other features are expressed. Normal-ization has also its disadvantages. The semantics of various features is de�nedindirectly, which makes reasoning about them more troublesome. Furthermore,parse trees over a grammar use the normalized productions, which can lookrather di�erent than their origins. It would be desirable to use normalizationequations rather than functions in order to be able to reason about equivalenceof syntax de�nitions. The problem with such an approach is the lack of controlover normalization. A solution could be the use of strategies such as describedin Luttik and Visser (1997).The modularization of the formalism and hence the modularization of thenormalization in separate normalization functions for each feature made thespeci�cation of normalization feasible. A normalization function that would inone pass over the grammar normalize it would be a very complex. However,the modularization also hides the interaction between features. When de�ninga normalization function for an extension of the kernel, only those constructsintroduced are normalized. The combination of features prompts the extensionof the normalization function to new constructs. Often this is can be achievedby innocent distribution equations, but in some cases the interaction betweenfeatures is more problematic. In particular, the interaction of renamings withother features needs more study.Language design is a software engineering process. A language de�nition getsbetter developed if it is actually used in a prototype implementation. The partsof the speci�cation of SDF2 that are used in the parser generator, i.e., thenormalization, were developed on demand. Especially the fragment of SDF2that corresponds to SDF was developed �rst, because most syntax de�nitionsfed to the parser generator were converted SDF de�nitions. Other parts of thespeci�cation, such as well-formedness or equality that are not directly used intools were developed later. But these parts are important because they de�nethe correctness criteria for implementations. The well-formedness checker canbe used to validate the output of a parser for a grammar. The equality checkercan be used to validate a matching algorithm for terms.The design approach we have used for SDF2 has led to an infrastructure forfurther study of syntax de�nition and experimentation with new features. Itis indeed very easy to extend the speci�cation in order to construct subsets orsupersets of the formalism, or to replace a feature by a variant.
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Part IIIMulti-Level Algebraic Speci�cation
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11Extensions of First-OrderSpeci�cationThe next chapters introduce a modular, applicative, multi-level equational spec-i�cation formalism that supports algebraic speci�cation with user-de�nable typeconstructors, polymorphic functions and higher-order functions. Speci�cationsconsist of one or more levels numbered 0 to n. Level 0 de�nes the object levelterms. Level 1 de�nes the types used in the signature of level 0. In general,the terms used as types at level n are de�ned at level n+ 1. This setup makesthe algebra of types and the algebra of types of types, etc., user-de�nable. Theapplicative term structure makes functions �rst-class citizens and facilitateshigher-order functions. The use of variables in terms used as types providespolymorphism (including higher-order polymorphism, i.e., abstraction over typeconstructors). Functions and variables can be overloaded. Speci�cations can bedivided into modules. Modules can be imported at several levels by means of aspeci�cation lifting operation. Equations de�ne the semantics of terms over asignature. The formalism also allows equations over types, by means of whichmany type systems can be described. The typechecker presented in Chapter 13does not take into account type equations.The speci�cation, in ASF+SDF, of the syntax, type system and semantics ofthe formalism is presented in three stages: (1) untyped equational speci�cations(2) applicative one-level speci�cations (3) modular multi-level speci�cations.The de�nition of a typechecker for stages (2) and (3) is divided into four parts:(a) well-formedness judgements verifying type correctness of fully annotatedterms and speci�cations, (b) non well-formedness rules giving descriptive errormessages for the cases not covered under (a), (c) a type assignment functionannotating the terms in a plain speci�cation with types, and (d) a typecheckingfunction which checks well-formedness after applying type assignment. Thesefunctions are de�ned uniformly for all levels of a speci�cation.Aside of de�ning a new speci�cation formalism, the next chapters illustratethe use of ASF+SDF for the design and prototyping of sophisticated speci�ca-tion formalisms.
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11 / extensions of first-order specification11.1 IntroductionAlgebraic speci�cation and functional programming are closely related paradigms.The foundation of both paradigms is equational logic. Values are representedby terms and a program or speci�cation consists of a list of equations over theseterms. Two terms that are equal according to a speci�cation (by means of equa-tional logic) have the same meaning and can replace each other in any context,a property called referential transparency.The paradigms di�er in the aim of a program or speci�cation. An algebraicspeci�cation de�nes a class of algebras that satisfy its equations. A functionalprogram on the other hand de�nes a method to compute a value from an initialvalue by executing the equations as rewrite rules. However, this di�erence ismainly one of emphasis; functional programs can be seen as algebraic speci�-cations that satisfy certain restrictions. Almost all speci�cations in this bookcan be executed as rewrite systems. In spite of that, there are many technicaldi�erences between actual formalisms. These di�erences can be divided intosemantics and type system.11.1.1 SemanticsThe choice of a semantics for a language is based on the set of required programconstructs, which may include equations, conditional equations, � abstraction,let binding, recursion and �xed-point operators, etc. In this chapter we use pureequational logic as the basis for the speci�cation logic.The operationalization of an equational algebraic speci�cation by means ofterm rewriting is aimed at determining whether two terms are equal or at �ndinga normal form for a term. The strategy used to accomplish this is of no im-portance. Functional programming languages, emphasizing computation ratherthan speci�cation, incorporate a rewrite strategy (innermost, outermost, lazy)into their semantics. Furthermore, functional languages make a distinction be-tween functions that transform a value into another and constructors that areused to represent data. In algebraic speci�cation this distinction is not made,e.g., the unary minus function `�' can be seen either as a constructor (�1) oras a function (�0 = 0).11.1.2 Type SystemsA signature determines which terms are the subject of a speci�cation or pro-gram. A type system determines the form of signatures and the well-formedterms over a signature. Several issues are of importance in the design of typesystems.Term Structure First-order many-sorted algebraic speci�cations use a many-sorted algebraic signature to assign types of the form s1�� � ��sn ! s0 to func-tion symbols f . Terms can be formed by application of such function symbolsto a list of terms ti of sort si, resulting in terms of the form f(t1; : : : ; tn). Thisfunction application construct is called algebraic. Such a type system is called218



Introduction / 11.1�rst-order because no higher-order functions (having functions as arguments)can be de�ned. A function symbol can only occur in a term when it is ap-plied to the right number of arguments. Other type systems allow higher-orderfunctions and use an applicative term structure | application is of the formt1 t2, term t1 applied to term t2 | to build terms. Applicative term structureis common in functional languages, whereas algebraic speci�cation formalismsgenerally use �rst-order term structures.Overloading If a function can have a �nite number of di�erent types it issaid to be overloaded. An example of overloading is addition on integers andreals. Overloading is common in frameworks with algebraic term structure,where it is easy to deduce which version of a function is used from the argu-ments to which it is applied. In applicative frameworks ambiguities caused byoverloading are much harder to resolve because functions can occur separatefrom their arguments. Therefore, overloading was omitted in early functionallanguages like ML. Most modern functional languages have some restricted formof overloading through type classes (see below).Polymorphism Parametric polymorphic functions, which were introduced byMilner (1978) in the functional languageML, can have in�nitely many types thatare instantiations of one generic type. An example of a polymorphic functionis the function that computes the length of a list, which is independent ofthe contents of lists and can therefore be de�ned for all possible lists at once.Polymorphic functions have a universally quanti�ed type. For instance the typeof length is 8�:list(�)! int.Restricted polymorphism For some applications this unrestricted polymor-phism is too strong. For instance, the polymorphic equality function with type8�:�� � ! bool also applies to functions, which is undesirable because func-tion equality is not computable. In Standard ML (Milner et al., 1990) the typeof the equality function is de�ned on the subset of the set of all types for whichequality is computable. This idea is generalized by Wadler and Blott (1989) bymeans of type classes, which are predicates on types that divide the set of typesinto subsets with certain properties that can be used to restrict the polymor-phism of functions. For instance, if the class eq indicates all types on whichequality can be de�ned, then the type of the equality function can be rephrasedas 8�:eq(�) ) � � � ! bool to express that the type variable can only bebound to types for which the eq predicate holds, that is, those that are in theeq class. The type classes of Wadler and Blott (1989) are unary predicates ontypes. Jones (1992) gives a more general formulation of restricted polymor-phism in his theory of quali�ed types, in which arbitrary predicates on types areallowed. Special cases of the theory are type classes, subtyping and extensiblerecords.Type Operators In frameworks with polymorphism the language of typesbecomes a user-de�nable set of terms and subject to a type system itself. In a�rst-order framework the type of lists of integers has a name like int-list. Ina polymorphic framework one wants to quantify over the type of the contents of219



11 / extensions of first-order specificationlists. By de�ning a type constructor list (a function from types to types), onecan denote lists of integers as list(int) and arbitrary lists as list(A), whereA is a variable ranging over types.Types of Types The language of types built from type constants and typeconstructors is itself an algebraic language with a signature. In many-sortedalgebraic signatures the only type constructors are � and ! and the languageof types is restricted to types of the form c1 � � � � � cn ! c0, where the ciare type constants. In polymorphic languages like ML the language of typesconsists of untyped, �rst-order terms, i.e., all type constructors have a type ofthe form type� � � � � type ! type. For instance, list is a type constructorthat takes a type and constructs a type, i.e., it is declared as list : type !type. Generalizing the idea of an algebra of type constructors, one can use anarbitrary many-sorted (instead of a one-sorted) signature for the speci�cationof the algebra of types, leading to a two-level signature. Further generalizationof this idea leads to a third-level signature that speci�es the types of types oftypes. In this chapter a formalism with multiple levels of signatures is presented.Higher-Order Polymorphism and Constructor Classes In Hindley/Milner typesystems the quanti�er in types can only range over types and not over type con-structors. Higher-order polymorphic functions can also quantify over type con-structors. With such polymorphism it is natural to extend the notion of a typeclass to a constructor class which restricts quanti�cation over type constructors(Jones, 1995).There are many other considerations in the design of type systems. Here werestrict our attention to the ones discussed above. See x14.6 for some referencesto surveys of type systems.11.2 Multi-Level Speci�cationsIn the chapters in this part we present the formalism MLS, a modular, applica-tive, multi-level, equational speci�cation formalism with overloading. Figure 11.1illustrates several features of this language by means of a two-level speci�cationof lists and trees with polymorphic size and map functions. The speci�cationimports the speci�cation of the type nat of natural numbers with functions 0,s and (+).Multi-level A speci�cation consists of arbitrary many levels of one-level spec-i�cations. The terms over the signature at level 0 are the `object' level terms.The types used in the signature of level 0 are terms over level 1. In general, thetypes in the signature at level n are terms over the signature at level n+1, as isdepicted in Figure 11.2. The types used in the signature of the highest level aredetermined by an implicit signature of types consisting only of type constantsand the type constructors � and !.The sort declarations at level n determine which of the terms at level n + 1can actually be used as type at level n. A term used as type should match one of220



Multi-Level Speci�cations / 11.2module list-treeimports nat;level 1signaturesorts type;functions(#), (->) : type # type -> type;list, tree : type -> type;variablesA, B : type;level 0signaturesorts A;functions[] : list(A);(::) : A # list(A) -> list(A);size : list(A) -> nat;map : (A -> B) # list(A) -> list(B);variablesX : A; L : list(A); G : A -> B;equationssize([]) == 0;size(X :: L) == s(size(L));map(G, []) == [];map(G, X :: L) == G(X) :: map(G, L);signaturefunctions[] : tree(A);node : tree(A) # A # tree(A) -> tree(A);size : tree(A) -> nat;map : (A -> B) # tree(A) -> tree(B);variablesX : A; T : tree(A); G : A -> B;equationssize([]) == 0;size(node(T, X, T')) == s(size(T) + size(T'));map(G, []) == [];map(G, node(T, X, T')) == node(map(G, T), G(X), map(G, T'))Figure 11.1: Two-level speci�cation of list and tree data types.the terms declared as sort. These ideas are illustrated in Figure 11.1. The termtype # type -> type in the �rst function declaration at level 1 is a term overthe implicit signature of the types at the highest level. (Note that � is written221



11 / extensions of first-order specification

signatureequations
implicit �;!signature

(a) One-level
signatureequationslevel 1
signatureequationslevel 0

implicit �;!signature

(b) Two-level

signatureequationslevel n
: : :signatureequationslevel 0

implicit �;!signature

(c) Multi-levelFigure 11.2: Speci�cations with one, two and multiple levels of signatures.# in ASCII notation.) The term list(A) is a term over the signature at level 1:list is a function from type to type and A is a type variable. Furthermore,list(A) matches the sort declaration A. Therefore, list(A) can be used in thesignature at level 0 as a type in the declaration of the functions [] (empty list),(::) (cons) etc. Level 0, �nally, determines the terms for the objects of realinterest, such as [], s(0) :: [], and map(s)(0 :: []).The example in Figure 11.1 shows a two-level speci�cation (n = 1). Theformalism supports arbitrarily many levels. The type constructors available atlevel 1 can be enriched by means of a third level. In x13.1 several examples ofthree level speci�cations are shown.Polymorphism Terms over a signature can contain variables. A term withvariables used as type in a signature denotes a polymorphic type. For instance,size is a function from list(A) to nat. This means that for any type t, sizeapplies to terms of type list(t). Quanti�cation is not restricted to types butcan also range over type constructors.Overloading Functions can have two or more related, or completely di�erent,types. This allows the use of function names for di�erent purposes, which is notpossible with polymorphism alone. For instance, the functions size and mapare de�ned for both lists and trees. Equations can also be overloaded. For222



Related Formalisms / 11.3example, the equations de�ning the functions size and map on empty lists andempty trees are exactly the same. Actually, writing this equation once wouldhave su�ced, because all possible interpretations of ambiguous equations aretaken into consideration.Applicative The term structure is applicative, i.e., application is a binaryoperation on terms. At the functional position an arbitrary term can occur.Functions are �rst-class citizens and can be arguments of functions. For in-stance, the function map has a function as argument, which it applies to allelements of a list or tree.Observe that the arrow and product constructors for types are considerednormal functions. The arrow in the type of size is the same arrow that is de-clared at level 1 as a binary function on types. There is, however, one di�erencewith other functions: the arrow and product constructors are related to the op-erations application and pairing. For each arrow type, there is a correspondingapplication operation that takes a term of type �1 ! �2 and a term of type�1 and produces a term of type �2. Similarly for each product type there is acorresponding pairing operation that takes two terms of types �1 and �2 andproduces a term of type �1 � �2.Equational Equational axioms over terms express the semantics of terms.Equational logic can be used for reasoning about terms, whereas term rewritingcan be used to decide ground equations for appropriate systems of equations orto compute the result of de�ned functions. The ideas for the multi-level typesystem in this chapter are also applicable to formalisms with other logics, e.g.,conditional equations, Horn clause logic or even �rst-order logic.Modular Multi-level speci�cations can be split into modules by means ofa rudimentary module system consisting of module declarations and modulereferences (imports). Operations for manipulating speci�cations can also beapplied to imports, facilitating reuse of speci�cations at more than one level(see x13.1 for examples).Type Equations The MLS formalism supports equations at all levels of aspeci�cation. This means that equations over types can be de�ned to spec-ify powerful type constructs like recursive types, quali�ed types, and logicalframeworks. However, the typechecker for MLS de�ned here does not take intoaccount equations over types. Typechecking in the presence of type equationsrequires E-uni�cation, which is undecidable in general. For restricted forms ofequations typechecking with E-uni�cation seems feasible, and might be incor-porated in future versions of the MLS typechecker (Visser, 1996b).11.3 Related FormalismsThe MLS formalism is a generalization of several concepts found in other for-malisms. Below we give a brief overview of related formalisms. The landscapeof formalisms is summarized by the diagram in Table 11.1. 223



11 / extensions of first-order specificationfeatures algebraic # levels applicative featuresol OBJ, Pluss, 1 OLS hofASF+SDF 2 ML, Miranda hof, pp, tc PolySpec Spectrum, Haskell hof, p, tcp, ol ATLAS 3 Quest hof, p, stp, ol ATLASII n MLS hof, p, olTable 11.1: Several algebraic and functional languages classi�ed accord-ing to their number of levels and to their term structure (algebraic vs.applicative). The additional features columns list the presence of: ol: over-loading, hof: higher-order functions, p: polymorphism, tc: type classes, st:subtypes.One-Level Monomorphic Algebraic Languages Algebraic speci�cation for-malisms such as OBJ (Futatsugi et al., 1985), Pluss (Bidoit et al., 1989) andASF+SDF (see Chapter 2) have monomorphic many-sorted �rst-order signa-tures as type system. The sort space consists of terms of the form c1�� � ��cn !c0, with the ci sort constants. A limited form of polymorphism can be obtainedby means of overloading and parameterized modules, but polymorphic higher-order functions are not provided. All these formalisms support arbitrary mix�xnotation. OBJ provides order-sorted signatures, in which an inclusion relationbetween sorts can be declared. In ASF+SDF, sort inclusion can be simulatedby means of syntaxless unary functions (also called injections). The formalismsOLS and MLS considered here support neither subsorting nor syntaxless func-tions.One-Level Monomorphic Applicative Languages The one-level applicativespeci�cation language OLS, de�ned in x12.2 and x12.3, generalizes the sort spaceof monomorphic algebraic languages to the closure under � and ! of the de-clared sort constants. The extension with respect to the algebraic frameworksdiscussed above is the support for higher-order functions.Two-Level Polymorphic Applicative Languages The type system for poly-morphic higher-order functions, known as the Hindley/Milner system, was �rstdescribed by Hindley (1969) as a type assignment algorithm for expressions incombinatory logic. It was extended by Milner (1978) to languages with localdeclarations. The functional programming language ML (Gordon et al., 1978)was the �rst language to incorporate this type system. For the introduction oftype operators, the type system of ML uses a second level of terms consisting ofan untyped, �rst-order signature. All type operators work on one implicit type(kind) of types. ML is not purely functional because it supports side e�ectsthrough assignments in expressions. Miranda (Turner, 1985) is one of a numberof purely functional languages with a Hindley/Milner type system. Haskell is ageneral purpose, purely functional programming language (Hudak et al., 1992)224



Related Formalisms / 11.3with a Hindley/Milner type system using one-sorted �rst-order user-de�nabletype constructors. Overloading, which is not supported in ML and Miranda, isintroduced in a restricted form through type classes (see x11.1.2), which are themain innovation of the language.The requirement and design speci�cation language Spectrum (Broy et al.,1993) is an algebraic speci�cation formalism with applicative term structure, atwo-level type system and sort classes, which is a variant of type classes. Thesecond level is an unsorted signature. The di�erence with functional languageslike Haskell is the use of full �rst-order logic instead of conditional equations.Two-Level Polymorphic Algebraic Languages The algebraic speci�cation for-malism PolySpec of Nazareth (1995) is a two-level formalism, with an untypedsecond level of type constructors and predicates (sort classes), which are usedto constrain polymorphism similarly to type classes.Both the algebraic and the applicative two-level languages that we have dis-cussed sofar have an untyped second level: all type constructors operate on thesingle, implicit sort type.Three-Level Applicative Languages Quest is a three level language inspiredby second-order typed �-calculus (Cardelli, 1993). A Quest program introducesobjects at three levels: values at level 0, types and type operators at level 1 andkinds at level 2. Instead of the limited universal type quanti�cation of Hind-ley/Milner type systems, explicit and nested quanti�cation over types is allowed.Universally quanti�ed types, i.e., polymorphic types, have to be instantiated ex-plicitly. For example, the identity function, declared as id : 8�:� ! �, should�rst be applied to a type to instantiate the type variable and then to a value,e.g., id[int](1). Cardelli (1993) discusses a rich set of built-in data types in-cluding mutable types, array types, exception types, tuple types, option types,recursive types, subtyping, operations at the level of types. Quest does notsupport overloading.Three-Level Algebraic Languages The algebraic speci�cation formalism AT-LAS of Hearn and Meinke (1994) is a three-level algebraic speci�cation for-malism. The main di�erences with MLS are: (1) ATLAS has an arrow typeconstructor for the type of functions and a product type constructor for thetype of pairs that are primitive at all levels, and that can be used as �rst-ordertypes of the form �1� � � ���n ! � , which means that term structure is algebraic.Higher-order function application can be simulated by means of a user-de�nedarrow type constructor and a user-de�ned application operator and by declaringfunctions as constants of the user de�ned arrow type. MLS has an applicativeinstead of an algebraic term structure, which makes higher-order types and func-tions more naturally de�nable. (2) An ATLAS speci�cation consists of threelevels for the constructors of `kinds', `types' and `combinators' as the di�erentsorts of terms are called. MLS speci�cations can have arbitrary many levelsinstead of the �xed three levels of ATLAS, making the de�nition of the syntaxand type system uniform for all levels and enabling speci�cations with moreor fewer than three levels. (3) ATLAS does not have a module system. (4)ATLAS considers ambiguous equations as erroneous. In MLS all well-formed225



11 / extensions of first-order specificationtypings of an equation are considered valid. (5) ATLAS speci�cations can con-tain rewrite rules at all levels, which are interpreted by the type assignmentmechanism. Although the MLS formalism allows equations at all levels, theseare not considered by the type assignment algorithm speci�ed in this chapter.Multi-Level Algebraic Languages ATLASII is a multi-level and modular re-design of ATLAS (Hearn, 1995). Items (1), (4) and (5) above also hold forATLASII.Multi-Level Applicative Languages The speci�cation formalism MLS de�nedin this chapter is an applicative multi-level language with overloading.11.4 OutlineThe next chapters present the multi-level speci�cation formalism MLS by meansof a speci�cation in ASF+SDF of syntax, type system and semantics. In ordernot to introduce too many concepts and technical details at once, the equationalspeci�cation formalism is presented in three phases, each enhancing the previousone: (1) an untyped formalism, (2) a one-level applicative formalism withoutoverloading or polymorphism, and (3) a multi-level, applicative formalism withpolymorphism and overloading.In x12.1 the notions of terms and equations for the untyped language arede�ned. Speci�cations are lists of equations over a simple term language withapplication and pairing. In x12.2 this untyped language is extended to a one-level language, after introducing the notions of types and signatures. In x12.3 atypechecker for this speci�cation language is de�ned as the composition of a typeassignment function and a well-formedness checker. The type assignment func-tion takes a plain term and annotates it with types. The well-formedness checkertakes a fully annotated term and veri�es its well-formedness. The speci�cation ispresented in four parts: Well-formedness judgements determine whether a fullyannotated term is well-formed according to a signature. The complements ofthe rules for well-formedness give descriptive error messages for non-wellformedterms. A type assignment function annotates each subterm of a plain term witha type. A typechecker combines type assignment and well-formedness checking.In Chapter 14 one-level speci�cations are used to form multi-level speci�ca-tions. The same syntax for terms, signatures and equations is used at all levels.The usefulness of such multi-level speci�cations is illustrated with several ex-amples of data type speci�cation in Chapter 13. The type system of multi-levelspeci�cations is de�ned with the same four part structure as for one-level speci-�cations. The same ideas apply to the type system, but are complicated by theaddition of multiple levels of signatures, polymorphism and overloading. Themost important innovation here is that the types of each level of the speci�cationare well-formed terms over the signature at the next level of the speci�cation.This means that types become typed terms. The same typechecking mechanismis used at all levels.In Appendix B a number of auxiliary tools that are used in the speci�cationare de�ned. In xB.1 several `standard' library modules like Layout and Booleansare de�ned. In xB.2 several utilities on terms such as sets of terms, substitution,matching and uni�cation are de�ned.226



12Untyped and Simply TypedSpeci�cationsIn this chapter we lay the foundations for the de�nition of multi-level speci�ca-tions. First we de�ne an untyped equational speci�cation formalism with equa-tional logic and term rewriting. Next we specify a language of signatures thatcan be used to restrict the terms used in equations. Signatures are interpretedby a well-formedness predicate on fully annotated terms. A type assignmentfunction annotates untyped terms with types according to a signature.12.1 Untyped Equational Speci�cationsEquational speci�cations consist of a list of equations over some term language.Such speci�cations can be interpreted as a set of axioms for reasoning withequational logic. For many speci�cations, equality of terms in the context ofan equational speci�cation can be made by means of term rewriting. We startwith the de�nition of the term language.12.1.1 TermsThe terms of our speci�cation language are simple applicative terms composed offunction symbols (identi�ers starting with a lowercase letter, e.g., map), variables(identi�ers starting with an uppercase letter, e.g., X), application (t1 t2), andpairing (t1; t2). Application is left-associative and has a higher priority thanpairing. Pairing is right-associative. For example, map G empty denotes ((mapG) empty), not map(G(empty)). Likewise, plus X, Y should be read as (plusX), Y and not as plus(X, Y). In this chapter we will write the argument of anapplication between parentheses, e.g., map(G)(empty) instead of map G empty.These notations are syntactically equivalent according to the following grammar.module Termsimports LayoutB:1:1exportssorts Fun Var Term 227



12 / untyped and simply typed specificationslexical syntax[a-z0-9][A-Za-z0-9 ]� ! Fun[A-Z][A-Za-z ]�[0-9 0]� ! Varcontext-free syntaxVar ! TermFun ! TermTerm Term ! Term fleftgTerm \;" Term ! Term frightg\(" Term \)" ! Term fbracketgprioritiesTerm Term ! Term > Term \;"Term ! Termvariables[xy][0-9 0]� ! Var\f "[0-9 0]� ! Fun\t"[0-9 0]� ! TermTo accommodate the convention of writing binary functions as in�x operators,xB.2.1 de�nes syntax for in�x operators. The application of a binary opera-tor � to two arguments t1 and t2 is written t1 � t2. By enclosing a binaryoperator in parentheses it is converted into a pre�x function symbol. Usingthis property an in�x application is translated into a pre�x application by theequation t1 � t2 = (�)(t1; t2). For example, in Figure 11.1 the expressionsize(T) + size(T') is equivalent to (+)(size(T), size(T')) and X :: L isequivalent to (::)(X, L). Furthermore, xB.2.1 introduces notation to use anarbitrary term as an in�x operator, such that a binary function application ofthe form t1(t2; t3) can be written as t2 :t1: t3. Finally, if the functions (::)and [] are used to construct lists, the notation [t1, : : : ,tn] can be used torepresent a list with a �xed number of elements. This notation is translated tot1 :: : : : :: tn :: []. Note that using the [t1, : : : ,tn] notation the tail of thelist is always [], i.e., can not be a variable or another term. Similarly, tupleterms of the form <t1; : : : ; tn> are abbreviations for t1 ^ : : : ^ tn ^ <>.The extension of multi-level signature formalisms with arbitrary mix-�x op-erators (like if then else ) leads to a multi-level grammar formalism.Such a formalism leads to extra complications in parsing. This is the subject ofChapter 15.Lists of terms separated by semicolons.exportssorts Termscontext-free syntaxfTerm \;"g� ! TermsTerms \++" Terms ! Terms frightg\(" Terms \)" ! Terms fbracketgvariables\t"\�"[0-9 0]� ! fTerm \;"g�\t"\+"[0-9 0]� ! fTerm \;"g+\ts"[0-9 0]� ! Terms228



Untyped Equational Speci�cations / 12.1equations[1] t�1 ++ t�2 = t�1; t�212.1.2 EquationsAn equation is a pair of terms t1 � t2. In order to avoid confusion between theequality symbol in the object language we are describing and the metalanguagewe describe it with, the symbol � is used for speci�cation equations. It iswritten == in examples. We will refer to the left-hand (right-hand) side t1 (t2)of an equation by `lhs' (`rhs'). An equational speci�cation is a list of equations.module Equationsimports Binary-OperatorsB:2:1 Terms12:1:1exportssorts Eq Eqscontext-free syntaxTerm \�" Term ! EqfEq \;"g� ! EqsEqs \++" Eqs ! Eqs fassocg\(" Eqs \)" ! Eqs fbracketgvariables\'"[0-9 0]� ! Eq\'"\�"[0-9 0]� ! fEq \;"g�\'"\+"[0-9 0]� ! fEq \;"g+\E"[0-9 0]� ! Eqsequations[1] '�1 ++ '�2 = '�1; '�2An example speci�cation is shown in Figure 12.1. The �rst two equations de�nethe addition operation (+) on successor naturals. The last two equations de�nethe function map that applies some function G to all elements of a list representedby means of the functions [] (empty list) and (::) (cons). Observe that someof the parentheses used are optional, e.g., we might as well write G X insteadof G(X). Recall that we will use the convention of writing the argument of anapplication between parentheses.12.1.3 Equational LogicA term represents a value. In an equational speci�cation a term representsthe same value as all terms to which it is equal. In this view the semantics ofa speci�cation is the equality relation on terms that it induces. This relationis determined by the following rules of equational logic together with a list ofequations (also called axioms). Two terms t1 and t2 are equal according to a229



12 / untyped and simply typed specifications0 + X == X;s(X) + Y == s(X + Y);map(G)([]) == [];map(G)(X :: L) == G(X) :: map(G)(L)Figure 12.1: Untyped equational speci�cation of addition on successor naturalsand map over cons lists.set of equations E if the predicate E ` t1 � t2 holds. Note that predicatesare modeled by means of Boolean functions in ASF+SDF. This entails thatthe speci�cation of a predicate consists of equations over sort Bool. If P is aBoolean function we will write P (x) in texts when we mean P (x) = >.The rules of equational logic are the reexivity, symmetry and transitivityrules of equivalence relations; an axiom rule that declares any equation in E asaxiom; a substitution rule that makes any substitution instance of a derivablyequation derivable; and congruence rules. The substitution rule [5] uses thenotation �(t) for the application to a term t of a substitution � that mapsvariables to terms. (See xB.2.7 for the de�nition of substitution.)module Equational-Logicimports Equations12:1:2 SubstitutionB:2:7 BooleansB:1:2exportscontext-free syntaxEqs \`" Eq ! Boolequations[1] E ` t � t = >[2] E ` t2 � t1 = >E ` t1 � t2 = >[3] E ` t1 � t2 = >, E ` t2 � t3 = >E ` t1 � t3 = >[4] '�1; t1 � t2; '�2 ` t1 � t2 = >[5] E ` t1 � t2 = >E ` �(t1) � �(t2) = >[6] E ` t1 � t3 = >, E ` t2 � t4 = >E ` t1 t2 � t3 t4 = >[7] E ` t1 � t3 = >, E ` t2 � t4 = >E ` t1; t2 � t3; t4 = >230



Untyped Equational Speci�cations / 12.1This speci�cation is not executable as a term rewrite system, because it isnon-deterministic and not normalizing. This is not surprising since equationalderivability is an undecidable property. To determine whether two terms areequal we can make use of several other techniques. In the following subsectionwe de�ne an evaluation function that implements a simple rewrite strategy thatdecides (ground) equality for a large class of speci�cations.12.1.4 Term RewritingEquational speci�cations can be interpreted as term rewriting systems by di-recting the equations from left to right. This gives a procedure for decidingderivable equality from a set of equations that constitutes a terminating andconuent rewrite system. Evaluation of a term in the context of a speci�cationamounts to �nding its normal form, if it exists, with respect to the term rewrit-ing system. If E is a list of equations and t is a term, then t0 = eval(E)[[t]] is thenormal form of t under E , i.e., t0 has no sub-term that matches the left-handside of an equation in E .There are a number of strategies used to �nd normal forms. Here we usea simple left-most innermost rewriting algorithm. This strategy is sound withrespect to equational logic, i.e., if two terms have the same normal form theyare also derivably equal. The strategy is (ground) complete with respect toconuent and strongly normalizing term rewrite systems, i.e., two terms arederivably equal if and only if they have the same normal form.Evaluation proceeds as follows. The auxiliary function `step' tries to �nd amatching equation for a term. If it �nds one, the instantiation of its right-handside is evaluated. In equation [6] the list of equations is searched (by means oflist matching, see Chapter 2) for an equation t1 � t2 such that the left-hand sidet1 matches the term t, i.e., such that there is a substitution � such that �(t1) = t.The substitution is found in the condition t1 := t = �. The substitution � formsthe environment for the evaluation of the right-hand side of the equation. If nomatching equation is found, `step' just returns its argument (equation [7]). Thefunction `eval' itself evaluates a term by �rst evaluating its direct sub-terms andthen applying `step' to the composition of the resulting normal forms.1module Term-Rewritingimports MatchingB:2:8 Equations12:1:2exportscontext-free syntaxeval \(" Eqs \)" \[[" Term \]]" ! Termeval \(" Eqs \)" \[[" Term \]]" \ " Subst ! Termstep \(" Eqs \)" \[[" Term \]]" ! Term1Note that the underscore in the syntax of the function `eval' is interpreted by theASF+SDF to LATEX typesetting program by typesetting the next argument, i.e., the substi-tution, as a subscript. 231



12 / untyped and simply typed specificationsequations[1] eval(E)[[t]] = eval(E)[[t]][][2] eval(E)[[x]]� = �(x)[3] eval(E)[[f]]� = step(E)[[f]][4] eval(E)[[t1 t2]]� = step(E)[[eval(E)[[t1]]� eval(E)[[t2]]� ]][5] eval(E)[[t1; t2]]� = step(E)[[eval(E)[[t1]]� ; eval(E)[[t2]]� ]][6] step(E)[[t]] = eval(E)[[t2]]�when E = '�1; t1 � t2; '�2, t1 := t = �[7] step(E)[[t]] = t otherwiseThe following proposition states that evaluation is sound with respect to deriv-able equality.Proposition 12.1.1 (soundness of evaluation) If E constitutes a terminat-ing term rewrite system and eval(E)[[t]]� = t0, then E ` �(t) � t0 and ifstep(E)[[t]] = t0, then E ` t � t0Proof. By simultaneous induction on the de�nition of eval and step. 2Observe that the speci�cation of evaluation is not su�ciently-complete, becausethe `eval' of a non-terminating term cannot be eliminated and thus is a newterm constructor. The restriction to terminating rewrite systems in the sound-ness proposition is necessary because the de�nition of equational logic does notaccount for these new term constructors. This could be repaired by introducingan auxiliary sort as the result of evaluation and using conditional equations tode�ne `eval' as in eval(E)[[t1]] = t01; eval(E)[[t2]] = t02eval(E)[[t1 t2]] = step(E)[[t01 t02]]The conditions work as `retracts' and guarantee that the rule only applies if theevaluation of the subterms terminate, thereby avoiding the pollution of the sortTerm. However, this gives a more complicated speci�cation that does not havea better termination behavior and adds nothing to our understanding of termrewriting. Therefore, we leave the speci�cation as it is, with the somewhat looseunderstanding that it says what we intend for terminating speci�cations.12.2 One-Level Speci�cationsThe untyped equations of the previous section do not impose a restriction onthe set of terms that they describe. Although we have an intuition about theterms that are meaningful with respect to a speci�cation and those that arenot, this is not formalized. For instance, the speci�cation in Figure 12.1 clearlymanipulates two categories of terms: numbers composed by 0, s and (+) andlists composed by [], (::) and map. However, s(map) + 0 is a valid term over232



One-Level Speci�cations / 12.2this speci�cation, which has no apparent meaning in our intuition about thespeci�cation.Signatures formalize the intuition about the types of terms in speci�cationsand allow one to check that speci�cations and terms comply with each other. Asignature is a list of declarations of functions and variables that is interpreted asa predicate on terms indicating which terms are well-formed. In this section, weextend the untyped equational speci�cation formalism with signatures, leadingto the one-level speci�cation formalism OLS.12.2.1 An ExampleBefore giving the syntax of type terms, signatures and speci�cations we discussa simple example of a one-level speci�cation. Figure 12.2(a) presents the spec-i�cation of natural numbers in OLS. The signature part declares the constantnat as a sort and the constant 0, the unary function s and the binary function(+). Furthermore, the signature declares X and Y as nat variables. Togetherthese declarations de�ne the terms of sort nat. The equation part de�nes themeaning of the binary function (+) in terms of 0 and s.The signature of this speci�cation is depicted by the signature diagram inFigure 12.2(b). The diagram consists an ellipse denoting the set of all termsof sort nat. The arrows denote the functions declared in the signature. Theconstant 0 is denoted by an arrow without origin. The unary function s isdenoted by an arrow from nat to nat; it takes a natural number and producesa new one. The binary function (+) takes two natural numbers and produces anew one, which is depicted by the forked arrow.signaturesorts nat;functions0 : nat;s : nat -> nat;(+) : nat # nat -> nat;variablesX, Y : nat;equations0 + X == X;s(X) + Y == s(X + Y)(a)
nat

(+)

0

s(b)
Figure 12.2: Speci�cation of successor naturals with addition (a) and corre-sponding signature diagram (b). 233



12 / untyped and simply typed specifications
nat

(,)
nat # nat nat -> nat

nat # nat -> nat

(@)

(+)

0 s(@)

Figure 12.3: Signature diagram of natural numbers in which function and prod-uct types and the corresponding application and pairing functions are depictedexplicitly. The functions s and (+) are constants of functional types.As we will see, the term structure of one-level speci�cations is actually applica-tive. This entails that besides nat, there are the sorts nat -> nat, nat # natand nat # nat -> nat. The signature diagram in Figure 12.3 depicts thissituation. The functions s and (+) are constants of sorts nat -> nat andnat # nat -> nat, respectively. The diagram also shows the role of the im-plicitly declared pairing (,) and application (@) functions.12.2.2 TypesA type is an expression that denotes a set of terms. Types in many-sorted sig-natures are composed of constants, such as nat, by means of the type operatorsproduct � and arrow!. The product type �1��2 denotes pairs of terms (t1; t2)of type �1 and �2, respectively. The type �1 ! �2 denotes the type of functionswith domain �1 and codomain �2. The types in polymorphic languages aref�;!g-types extended with arbitrary terms like list(nat). We will see laterthat such types can be described by a signature. Anticipating this extension,we use terms extended with the product and arrow operators as types. Thevariable � , ranging over terms, will be used to indicate a term used as type.A type annotation of a term is the attachment of a type to each subterm.Annotation is expressed by means of the operator `:'. The term t : � denotesthe term t annotated with type � . A term is fully annotated if each subterm hasa type annotation. For example, the term(s : nat -> nat)(0 : nat) : natis a fully annotated version of the term s(0). In the context of a signature,a term without annotations is an abbreviation of an annotated term. In themulti-level extension that we will de�ne in x14.1 and x14.3 we will encounterterms with annotations that are themselves annotated, e.g.,[] : ((list : type -> type)(A : type) : type)is the term [] annotated with the type list(A), which is itself annotated.Compare the annotation of list(A) with that of s(0) above.234



One-Level Speci�cations / 12.2module Typesimports Terms12:1:1exportscontext-free syntax\nil" ! Term\top" ! TermTerm \�" Term ! Term frightgTerm \!" Term ! Term frightgTerm \:" Term ! Term frightgprioritiesTerm Term ! Term > Term \�"Term ! Term >Term \!"Term ! Term > Term \:"Term ! Term >Term \;"Term ! Termvariables\�"[0-9 0]� ! Term\�"\�"[0-9 0]� ! fTerm \;"g�\�"\+"[0-9 0]� ! fTerm \;"g+The terms `nil' and `top' are auxiliary types that will be used in typechecking.`nil' denotes the empty type, which is assigned to terms for which no type exists.In our multi-level setting, `top' will denote the type of top-level types, i.e., termsover the implicit signature on top of a multi-level speci�cation.The priorities section declares that application has highest priority of all termconstructors and that product binds stronger than arrow, which has higherpriority than type annotation and pair. For instance, consider the followingdisambiguations:text disambiguated aslist : type -> type list : (type -> type)list A -> nat (list A) -> natnat # nat -> nat (nat # nat) -> natlist : type -> type A : type list : ((type -> (type A)) : type)12.2.3 Term AnalysisRecall that we have the following term constructors: variable and function sym-bols, nil, top, application, pairing, product, arrow and annotation. These areall the constructors we will consider in this chapter. All other functions thatproduce terms should be such that they can always be eliminated (i.e., thespeci�cation is assumed to be su�ciently complete). Assuming this property,a default (otherwise) equation over a function with a term as argument rangesover all constructors for which no other equation is de�ned, and thus is anabbreviation for a list of equations with those other constructors substituted.For future use we now de�ne several functions for analyzing terms. The sort(Term ) Term) is the sort of functions from terms to terms that is de�ned inxB.2.3. The basic operation of this sort is the application of a function to a termyielding a term, i.e., (Term ) Term)(Term) ! Term. This approach makes itpossible to generically de�ne a function that applies a (Term) Term) function235



12 / untyped and simply typed specificationsto all terms in a list of terms.module Term-Analysisimports Term-FunctionsB:2:3 Terms12:1:1 Types12:2:2 Binary-OperatorsB:2:1exportscontext-free syntaxspine ! (Term) Term)fspine ! (Term) Term)term ! (Term) Term)type ! (Term) Term)dom ! (Term) Term)cod ! (Term) Term)fun ! (Term) Term)arg ! (Term) Term)bterm ! (Term) Term)bapp ! (Term) Term)equationsThe type assignment functions that will be speci�ed later add annotations toterms. In order to relate a fully annotated term to its underlying plain term, thefunction `spine' removes all annotations from a term. For instance, the spine of(s : nat -> nat)(0: nat) : nat is s(0).[1] spine(t : � ) = spine(t)[2] spine(f) = f[3] spine(x) = x[4] spine(nil) = nil[5] spine(top) = top[6] spine(t1; t2) = spine(t1); spine(t2)[7] spine(t1 t2) = spine(t1) spine(t2)[8] spine(t1 � t2) = spine(t1) � spine(t2)[9] spine(t1 ! t2) = spine(t1) ! spine(t2)The function `fspine' is the same as `spine' except that it does not remove theannotation from a function symbol.[10] fspine(f : � ) = f : �[11] fspine(t : � ) = fspine(t) otherwiseThe other equations are the same as for `spine'. This function is used totranslate annotated terms over a signature with overloading to disambiguatedplain terms.The `term' of an annotated term is the term without its outermost typeannotation. The `type' of a term is its outermost annotation.[12] term(t : �) = t[13] type(t : �) = �We see that for any term t of the form t0 : � , term(t) : type(t) = t. To extendthis property to arbitrary terms, the `term' of a term without annotation is236



One-Level Speci�cations / 12.2de�ned to be the term itself and the `type' of a term without annotation is`top'. To complete the picture it follows that a term with annotation `top' isequal to the term itself.[14] term(t) = t otherwise[15] type(t) = top otherwise[16] t : top = tNow we have for arbitrary terms[17] term(t) : type(t) = tThe functions `dom' and `cod' give the domain and codomain of a function type,respectively. The domain of a term that is not an arrow is nil, its codomain isthe term itself. nil is a left unit for arrow. This corresponds to the notion thata constant is a function without arguments. Similarly the functions `fun' and`arg' give the function and argument of an application[18] dom(t1 ! t2) = t1 [19] arg(t1 t2) = t2[20] dom(t) = nil otherwise [21] arg(t) = nil otherwise[22] cod(t1 ! t2) = t2 [23] fun(t1 t2) = t1[24] cod(t) = t otherwise [25] fun(t) = t otherwise[26] nil ! t = t [27] t nil = tWe have[28] dom(t) ! cod(t) = t [29] fun(t) arg(t) = tThe functions above are combined in the de�nition of the function `bterm' that isused to analyze the types of binary functions. It strips the outermost annotationo� an arrow term and o� its domain.[30] bterm(t) = term(dom(term(t))) ! cod(term(t))For example,bterm((((nat : type) # (nat : type)) : type-> (nat : type) : type))= (nat : type) # (nat : type) -> (nat : type)This function will be used for typechecking multi-level speci�cations. Similarlythe function `bapp' removes the annotations from a binary application[31] bapp(t) = t1 (t2; t3)when term(t) = t 01 t 02, term(t 01) = t1, term(t 02) = t2; t3[32] bapp(t) = t otherwiseFor example,bapp(((+) : nat # nat -> nat)((0 : nat, 0 : nat) : nat # nat) : nat)= (+)((0 : nat), (0 : nat)) 237



12 / untyped and simply typed specifications12.2.4 Syntax of One-Level Speci�cations (OLS)A speci�cation consists of a signature and a list of equations. A signature isconstructed from sort, function and variable declarations. We start with thede�nition of declarations.Declarations A function declaration of the form f : � assigns the type � tofunction symbol f . For example, the type of the addition operator plus onnatural numbers is declared as plus : nat # nat -> nat. An in�x operatoris declared by declaring its pre�x notation as a binary function. For instance, ifwe use + as an in�x operator for addition on natural numbers we would declare(+) : nat # nat -> nat. A variable declaration of the form x : � assigns type� to variable symbol x. For instance, the declaration X : nat declares a variableX of type nat. A sort declaration consists of a declaration of function symbolsto be used as basic types.module OLSimports Terms12:1:1 Types12:2:2 Binary-OperatorsB:2:1exportssorts Decl Declscontext-free syntaxfFun \;"g+ \:" Term ! DeclfVar \;"g+ \:" Term ! DeclfDecl \;"g� ! DeclsDecls \++" Decls ! Decls frightgvariables[f]\+"[0-9 0]� ! fFun \;"g+[x]\+"[0-9 0]� ! fVar \;"g+\d"[0-9 0]� ! Decl\d"\�"[0-9 0]� ! fDecl \;"g�\d"\+"[0-9 0]� ! fDecl \;"g+\ds"[0-9 0]� ! DeclsequationsAccording to the syntax above, declarations can have the form f1; : : : ; fn : �declaring in one declaration the function symbols fi to be of type � . Thisnotation is merely an abbreviation of a list of declarations fi : � as expressedby the following equations.[1] d�1; f+1 ; f+2 : � ; d�2 = d�1; f+1 : � ; f+2 : � ; d�2[2] d�1; x+1 ; x+2 : � ; d�2 = d�1; x+1 : � ; x+2 : � ; d�2[3] d�1 ++ d�2 = d�1; d�2Signatures An atomic signature is constructed from sort, function and vari-able declarations by the constructors `sorts', `functions' and `variables', respec-tively. Signatures can be combined by the signature concatenation operator`;'. The projection functions `S', `F' and `V' yield the list of sorts, functiondeclarations, and variable declarations, respectively, of a signature.238



One-Level Speci�cations / 12.2exportssorts Sigcontext-free syntax\sorts" Terms ! Sig\functions" Decls ! Sig\variables" Decls ! Sig! SigSig \;" Sig ! Sig frightg\(" Sig \)" ! Sig fbracketg\S"(Sig) ! Terms\F"(Sig) ! Decls\V"(Sig) ! Declsvariables\�"[0-9 0]� ! SigequationsEquations [5], [7] and [9] express that atomic signatures with empty declarationlists are equivalent to empty signatures.[4] ; � = � [5] sorts =[6] �; = � [7] functions =[8] (�1; �2); �3 = �1; �2; �3 [9] variables =[10] S(sorts ts) = ts [11] S() =[12] S(functions ds) = [13] S(�1; �2) = S(�1) ++ S(�2)[14] S(variables ds) =[15] F(sorts ts) = [16] F() =[17] F(functions ds) = ds [18] F(�1; �2) = F(�1) ++ F(�2)[19] F(variables ds) =[20] V(sorts ts) = [21] V() =[22] V(functions ds) = [23] V(�1; �2) = V(�1) ++ V(�2)[24] V(variables ds) = dsSpeci�cations An atomic speci�cation is a signature or a list of equations in-dicated by the functions `signature' and `equations', respectively. Speci�cationsare combined by the operator `;'. The projection functions `Sg' and `E' give thesignature and equations of a speci�cation.imports Equations12:1:2exportssorts Speccontext-free syntax\signature" Sig ! Spec\equations" Eqs ! Spec! SpecSpec \;" Spec ! Spec frightg\(" Spec \)" ! Spec fbracketg\Sg"(Spec) ! Sig\E"(Spec) ! Eqs 239



12 / untyped and simply typed specificationsvariables\S"[0-9 0]� ! Specequations[25] ; S = S [26] signature =[27] S ; = S [28] equations =[29] (S1; S2); S3 = S1; S2; S3[30] Sg(signature �) = � [31] E(signature �) =[32] Sg(equations E) = [33] E(equations E) = E[34] Sg() = [35] E() =[36] Sg(S1; S2) = Sg(S1); Sg(S2) [37] E(S1; S2) = E(S1) ++ E(S2)We can extend the (Term ) Term) functions to apply to all terms in a spec-i�cation. By means of these functions we can apply the functions `spine' and`fspine' to a fully annotated speci�cation in order to get its underlying plainspeci�cation. Accordingly, spine(S) denotes the underlying plain speci�cationof speci�cation S.12.2.5 Speci�cation SemanticsThe semantics of speci�cations is de�ned by means of an extension of equationallogic to terms with type annotations.Typed Equational Logic Equation [1] states that an equation t1 � t2 is anaxiom of a speci�cation S if it is an element of the equations of S. The otherrules are the same as in the case of untyped equational logic (x12.1.3), exceptfor the congruence rule for annotated terms [2]. Only terms with the sameannotation can be equated if they are equal without annotation. Compare thisto the congruence rules for application [6] and pairing [7] in x12.1.3, where botharguments can be equal modulo the equations in E . In the case of multi-levelspeci�cations we will give an equational logic (x14.1.3) where equations overtypes play a role.module OL-Equational-Logicimports OLS12:2:4 SubstitutionB:2:7exportscontext-free syntaxSpec \`" Eq ! Boolequations[1] E(S) = '�1; t1 � t2; '�2S ` t1 � t2 = >[2] S ` t1 � t2 = >S ` t1 : � � t2 : � = >240



Typechecking One-Level Speci�cations / 12.3The standard rules for reexivity, symmetry, transitivity, substitution and con-gruence for the other binary operators are not shown.Proposition 12.2.1 Typed equational logic over a list of equations E is typepreserving if the equations in E are type preserving, i.e., if for each t1 � t2 2 E,type(t1) = type(t2) then E ` t � t0 implies type(t) = type(t0).Proof. (Sketch) by induction on derivations. The property clearly holds for[1], [2] and equality of types is preserved by reexivity, symmetry, transitivity,substitution and congruence. 2Typed Term Rewriting In accordance with the rules for typed equational logic,the typed innermost term rewriting function `eval' applies equations, orientedfrom left to right, until a term is in normal form. The annotation of a termis not evaluated in equation [2], because the equations of a speci�cation applyonly to object terms and not to types.module OL-Term-Rewritingimports OLS12:2:4 MatchingB:2:8exportscontext-free syntaxeval \(" Spec \)" \[[" Term \]]" ! Termeval \(" Spec \)" \[[" Term \]]" \ " Subst ! Termstep \(" Spec \)" \[[" Term \]]" ! Termequations[1] eval(S)[[t]] = eval(S)[[t]][][2] eval(S)[[t : � ]]� = step(S)[[eval(S)[[t]]� : �(� )]][3] step(S)[[t]] = eval(S)[[t2]]�when E(S) = '�1; t1 � t2; '�2, t1 := t = �[4] step(S)[[t]] = t otherwiseThe evaluation rules for the other operators are straightforward following Sec-tion 12.1.4. Note that recursive applications of eval to the other new operatorsproduct and arrow have to be added.12.3 Typechecking One-Level Speci�cationsThe context-free syntax of speci�cations de�ned in the previous section allowsmany degrees of freedom. In this section we narrow this down to the subset ofone-level equational speci�cations with monomorphic types and no overloading.In x14.3 we will extend this to multi-level signatures with polymorphism andoverloading. Here we avoid the complications introduced by multi-level spec-i�cations to make it easier to explain the architecture and basic ideas of thespeci�cation of the type system. 241



12 / untyped and simply typed specifications
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Figure 12.4: Architecture of typechecker for one-level speci�cations.In x12.3.2 (Module OLS-WF) the well-formedness of fully annotated speci�-cations is de�ned. The de�nition of well-formedness only speci�es the correctcases, i.e., it contains a function which yields > i� the speci�cation is well-formed. It does not deal with erroneous cases. The translation of these tohuman readable error messages is taken care of in x12.3.3 (Module OLS-NWF).Since fully annotated speci�cations are di�cult to read and write, one is notexpected to actually write such speci�cations (although it is possible to supplypartial annotations in terms to constrain their typing). Instead, plain speci-�cations without annotations are annotated with types by a type assignmentfunction de�ned in x12.3.4 (Module OLS-TA).Finally, the typechecker de�ned in x12.3.5 (Module OLS-TC) �rst appliesthe type assignment function to a speci�cation and then checks the result forwell-formedness. This setup gives a separation between typechecking and typeassignment that saves a great deal of bookkeeping and makes the de�nitionsaccessible. Moreover, annotated speci�cations can be used as input for toolsother than a well-formedness checker, for instance a theorem prover or termrewriter. This architecture is illustrated in Figure 12.4.First we de�ne projection functions to �nd the type of a function or variablein a signature.12.3.1 ProjectionThe projection function � yields the type of the �rst declaration for a variable orfunction in a list of declarations. The type of a function symbol f in a signature� is �f (�). The type of a variable symbol x in a signature � is �x(�). Observethat variable declarations in a `functions' section and function declarations in a`variables' section are ignored.242



Typechecking One-Level Speci�cations / 12.3module Projectionimports OLS12:2:4exportscontext-free syntax\�" \ " Var \(" Decls \)" ! Term\�" \ " Fun \(" Decls \)" ! Term\�" \ " Var \(" Sig \)" ! Term\�" \ " Fun \(" Sig \)" ! TermequationsLooking up a function in a list of declarations. If no declaration is found theterm `nil' is returned.[1] �f(d �) = nil when d � =[2] �f(f : � ; d �) = �[3] �f(d; d �) = �f(d �) otherwiseThe projection of a variable from a list of declarations is de�ned similarly.[4] �x(d �) = nil when d � =[5] �x(x : � ; d �) = �[6] �x(d; d �) = �x(d �) otherwiseLooking up the type of a function in a signature consists of looking it up in thelist of function declarations. The type of a variable is found by looking it up inthe list of variable declarations.[7] �f(�) = �f(F(�))[8] �x(�) = �x(V(�))12.3.2 Well-formednessWell-formedness judgements on terms characterize the well-formed, fully anno-tated terms over a signature, i.e., given a signature � the set Tfa(�) de�nedas Tfa(�) = ft j t 2 Term ^ � t̀erm tgis the set of fully annotated terms t that satisfy the well-formedness judgement� t̀erm t. The plain terms (without annotation) over a signature can be obtainedby taking the spines of the well-formed, fully annotated, terms, i.e., the set T(�)of plain terms over � de�ned asT(�) = fspine(t) j t 2 Term ^ � t̀erm tgIn this section we de�ne well-formedness of fully annotated terms. In x12.3.4we de�ne a type assignment function that produces a fully annotated term fora plain term. Figure 12.5 shows a fully annotated speci�cation. 243



12 / untyped and simply typed specificationssignaturesorts nat;functions0 : nat;s : nat -> nat;(+) : nat # nat -> nat ;variablesX : nat; Y : nat;equations((+) : nat # nat -> nat)((0 : nat, X : nat) : nat # nat) : nat== X : nat;((+) : nat # nat -> nat)(((s : nat -> nat) (X : nat) : nat, Y : nat): nat # nat) : nat==(s : nat -> nat) (((+) : nat # nat -> nat)((X : nat, Y : nat) : nat # nat) : nat): natFigure 12.5: A fully annotated one-level speci�cation. This is an annotation ofthe speci�cation in Figure 12.2.We de�ne not only the well-formedness of terms, but also the well-formednessof signatures and equations. In general, well-formedness judgements de�newhich syntactically correct expressions are well-formed. The well-formednessof fully annotated one-level speci�cations is de�ned by means of the followingjudgements.module OLS-WFimports OLS12:2:4 Projection12:3:1 VariablesB:2:6 Error-BooleansB:1:3Term-Analysis12:2:3exportscontext-free syntax\ s̀pec" Spec ! EBool\ s̀ig" Sig ! EBool\ s̀orts" Terms ! EBoolSig \ d̀ecls" Decls ! EBoolSig \ s̀ort" Term ! EBoolSig \ t̀erm" Term ! EBoolSig \ èqs" Eqs ! EBoolThe well-formedness of a fully annotated speci�cation S is de�ned by means ofthe judgement s̀pec S. It is de�ned in terms of several other judgements of theform � r̀ r, which stands for `construct r (of type r) is correct with respect244



Typechecking One-Level Speci�cations / 12.3to signature �'. For instance, the judgement � t̀erm t determines whether t isa well-formed term with respect to �. Equations de�ning judgements will, ingeneral, have the form C1(q;�); : : : ; Cm(q;�)� q̀ q(r1; : : : ; rn) = � r̀1 r1 ^ : : : ^ � r̀n rnto express that a construct q with subconstructs ri is well-formed if conditionsCi hold for q and � and if the subconstructs are well-formed.Judgements are functions that yield a term of the sort EBool of error Booleans.This sort is a version of the Booleans (de�ned in xB.1.3) with a constant> (`true'or `correct') but with no constant for `false' or `incorrect'. Instead all elementsof the sort Error act as values representing incorrectness. Two operations arede�ned on error Booleans. The symmetric conjunction ^ yields > in case botharguments are > and yields the addition of the errors otherwise. The asymmet-ric conjunction; yields > if both arguments are > and otherwise it prefers theerror of the left argument.In this subsection only the positive cases for the judgements are de�ned. Inthe next subsection the other, negative, cases are de�ned to yield errors thatgive a description of the well-formedness rule that is violated.equationsA speci�cation is well-formed if its signature is well-formed and its equationsare well-formed with respect to the signature.[1] s̀pec S = s̀ig � ; � èqs E(S) when Sg(S) = �Signatures A signature is well-formed if all its sort, function and variabledeclarations are well-formed.[2] s̀ig � = s̀orts S(�) ^ � d̀ecls F(�) ^ � d̀ecls V(�)The terms declared as sorts in the sorts section should be constant terms, i.e.,function symbols.[3] s̀orts f = >[4] s̀orts = >[5] s̀orts � +1 ; � +2 = s̀orts � +1 ^ s̀orts � +2A declaration is correct if the type assigned to the function or variable is awell-formed sort (see below) and if the function or variable is not overloaded.[6] � d̀ecls f : � = � s̀ort � when �f(�) = �[7] � d̀ecls x : � = � s̀ort � when �x(�) = �[8] � d̀ecls = >[9] � d̀ecls d+1 ; d+2 = � d̀ecls d+1 ^ � d̀ecls d+2Recall that �f (�) gives the type of f in �. The condition �f (�) = � for adeclaration f : � expresses that there should be only one declaration for f inthe signature. If there are more (with di�erent types), the condition will failwhen checking the second declaration because �f (�) will yield the type of the�rst declaration. 245



12 / untyped and simply typed specificationsSorts Sorts are terms composed by � and ! from function symbols, whichare the basic sorts. A basic sort should be declared in the sorts section asexpressed by the condition of equation [10].[10] � s̀ort f = > when f 2 S(�) = >[11] � s̀ort t1 � t2 = � s̀ort t1 ^ � s̀ort t2[12] � s̀ort t1 ! t2 = � s̀ort t1 ^ � s̀ort t2Terms A term is well-formed if all its subterms are annotated with a type ina correct way corresponding to the signature. Variables and functions are well-formed if their annotation is equal to their declared type in the signature andif that type is a well-formed sort. This additional condition is needed because�t(�) yields `nil' if t is not declared. If the annotation is also `nil', this wouldwrongly imply that the term is correct. Since `nil' cannot be a sort, this extracondition is su�cient. A pair is well-formed if its type is the product of the typesof its arguments. An application is well-formed if the its type is the codomain ofthe type of the function and if the type of the argument is equal to the domainof the type of the function.[13] �x(�) = � , � s̀ort � = >� t̀erm x : � = >[14] �f(�) = � , � s̀ort � = >� t̀erm f : � = >[15] type(t1) � type(t2) = �� t̀erm (t1; t2) : � = � t̀erm t1 ^ � t̀erm t2[16] type(t1) = type(t2) ! �� t̀erm t1 t2 : � = � t̀erm t1 ^ � t̀erm t2There is no need to check the well-formedness of the types of applications andpairs, because equations [16] and [15] preserve well-formedness of type annota-tions. In equation [15]: if type(ti) are well-formed, then their product is alsowell-formed. In equation [16]: if type(ti) are well-formed, then � must also bewell-formed, because it is a subterm of type(t1).Equations An equation is well-formed if both sides have the same type andif all variables used in the right-hand side occur in the left-hand side. Thelast condition ensures that no new variables are introduced if the equations areinterpreted as rewrite rules oriented from left to right.[17] type(t1) = type(t2), vars(t2) � vars(t1) = >� èqs t1 � t2 = � t̀erm t1 ^ � t̀erm t2[18] � èqs = >[19] � èqs '+1 ; '+2 = � èqs '+1 ^ � èqs '+2246



Typechecking One-Level Speci�cations / 12.3The following proposition states that a well-formed speci�cation preservestypes. This means that if two terms are equal according to a well-formed spec-i�cation (and the rules of equational logic), they have the same type and thatthe normal form of a term has the same type as the term that is evaluated.Proposition 12.3.1 (Type Soundness) Equational logic and rewriting withwell-formed speci�cations is type preserving: If s̀pec S and Sg(S) t̀erm ti thenS ` t1 � t2 implies type(t1) � type(t2). Furthermore, eval(S)[[t1]] = t2 impliestype(t1) = type(t2).Proof. By the well-formedness of S it follows that all equations are type pre-serving (equation [17]) and by Proposition 12.2.1 it then follows that equationalderivations for S are type preserving. The second part of the proposition fol-lows from the �rst part and the soundness of evaluation with respect to derivableequality (Proposition 12.1.1). 2The condition Sg(S) t̀erm ti implies that the terms ti are fully annotated.Normally, when considering a speci�cation, we think about equality of plainterms. By means of the function spine and the well-formedness judgements wecan characterize the plain terms T(�) over a signature (see beginning of thissubsection). The following proposition states that well-formed speci�cationscan only equate plain terms for which well-formed full annotations exist.Proposition 12.3.2 If s̀pec S 0, S = spine(S 0), t1 6= t2 and S ` t1 � t2, thenthere are t01 and t02 such that spine(t01) = t1, spine(t02) = t2, S 0 t̀erm t0f1;2g andtype(t01) = type(t02).12.3.3 Non-wellformednessIn the previous section we have de�ned which speci�cations are well-formed.In this section we look at the cases not covered by the well-formedness rules,which are, by de�nition, not well-formed. As an example of the type of errormessages generated by these rules, Figure 12.6 shows the errors for an incorrectversion of equations of the natural numbers speci�cation from x12.2. We deriveequations for the generation of error messages for non-wellformed speci�cationsby looking at which cases were not covered by the equations above. If we hadan equation of the form C1(q;�); : : : ; Cm(q;�)� q̀ q(r1; : : : ; rn) = � r̀1 r1 ^ : : : ^ � r̀n rnthe error case will be of the form:C1(q;�) _ � � � _ :Cm(q;�)� q̀ q(r1; : : : ; rn) = � r̀1 r1 ^ : : : ^ � r̀n rn ; "q" not well-formedIf either of the conditions does not hold then construct q is not well-formed. Butwe only want to report this fact if all its sub-constructs are well-formed. Other-wise only the reasons for non-wellformedness of the sub-constructs are reported,247



12 / untyped and simply typed specificationsequations0 + X == Y;s(X) + Y == s + (X, Y) (a)equation "(+)(0, X) == Y" not well-formed :variables "Y" of rhs not in lhs ;application "(+)(s , X , Y )" not well-formed :type of argument "(nat -> nat) # nat # nat"does not match type of domain "nat # nat"(b)Figure 12.6: Non-wellformed speci�cation (a) and errors (b) corresponding tothe violations against the well-formedness rules. The signature part of thespeci�cation in (a) is not shown here but corresponds to the signature in Fig-ure 12.2(a).which is expressed by the use of the asymmetric conjunction ;. Furthermore,we may choose to generate more precise error messages that are related to theconditions Ci. We then get equations of the formC1(q;�); : : : ; Ci�1(q;�);:Ci(q;�)� q̀ q(r1; : : : ; rn) = � r̀1 r1 ^ : : : ^ � r̀n rn; "q" does not have property CiInstead of negating the conditions we can use default equations to deal with theremaining cases.� q̀ q(r1; : : : ; rn) = � r̀1 r1 ^ : : : ^ � r̀n rn ; "q" not well-formedotherwisemodule OLS-NWFimports OLS-WF12:3:2 SPEC-ErrorsB:2:2equationsDeclarations No terms other than constants can be declared as sorts.[1] s̀orts � = " � " not a well-formed sort declaration otherwise[2] � d̀ecls f : � = function " f " multiply declared otherwise[3] � d̀ecls x : � = variable " x " multiply declared otherwise248



Typechecking One-Level Speci�cations / 12.3Sorts A term is a non-wellformed sort if it is a constant that is not declaredor if it is a term that is not a constant, product or arrow.[4] � s̀ort f = sort " f " not declared when f 2 S(�) = ?[5] � s̀ort t = " t " not a well-formed sort otherwiseFunctions and Variables If the result of looking up a function or variablein the signature is `nil', it is not declared, otherwise the declared sort is notwell-formed.[6] � t̀erm f : � = function " f " not declared when �f(�) = nil[7] � t̀erm f : � = � s̀ort � otherwise[8] � t̀erm x : � = variable " x " not declared when �x(�) = nil[9] � t̀erm x : � = � s̀ort � otherwisePair and Application[10] � t̀erm (t1; t2) : � = (� t̀erm t1 ^ � t̀erm t2); pair " spine(t1; t2) " not well-formedotherwise[11] � t̀erm t1 t2 : �= (� t̀erm t1 ^ � t̀erm t2); application " spine(t1 t2) " not well-formed:: if eq(dom(type(t1)); nil)then " spine(t1) " is not a functionelse type of argument " type(t2)" does not match type of domain " dom(type(t1)) "otherwiseNote that the function `spine' is used to show a term without its type annota-tions.Annotation Terms without annotation or with double annotations are neverwell-formed.[12] type(t) = top� t̀erm t = term " t " not well-formed[13] � t̀erm (t : � 1) : � 2= � t̀erm t : �1; annotation of " spine(t) " with " � 2 " not well-formed: should be " spine(� 1) "For several constructors in the language of terms we did not formulate any rulesbecause they cannot be used at the level of terms at all.[14] � t̀erm t1 � t2 : � = term " spine(t1 � t2) " not well-formed[15] � t̀erm t1 ! t2 : � = term " spine(t1 ! t2) " not well-formed[16] � t̀erm top : � = term " top " not well-formed[17] � t̀erm nil : � = term " nil " not well-formed 249



12 / untyped and simply typed specificationsEquations[18] � èqs t1 � t2= (� t̀erm t1 ^ � t̀erm t2); equation " spine(t1) � spine(t2) " not well-formed:: if : eq(type(t1); type(t2))then types do not matchelse variables " trms(vars(t2) = vars(t1)) " of rhs not in lhsotherwiseThe following proposition states that the de�nition of the well-formednessjudgement for terms is su�ciently-complete, i.e., all cases are covered by thewell-formedness and non-wellformedness rules.Proposition 12.3.3 For any term t and signature �, � t̀erm t 2 f>g[Error.12.3.4 Type AssignmentFigure 12.5 shows that it is a tedious task to write fully annotated speci�ca-tions. In this subsection we de�ne the type assignment function Wt(�)[[t]] thatannotates a term with types according to signature �. Terms for which no typ-ing exists are assigned the `nil' type. If a term is already partially annotated,these annotations are checked against the derived annotations. In the one-levelframework we are currently dealing with there is not much use for such anno-tations because terms can have at most one type. However, in the multi-levelframework terms can be polymorphically typed and we will also allow functionsto be overloaded. In such a situation, partial annotations are useful to enforcea more speci�c type for a term.module OLS-TAimports OLS12:2:4 Projection12:3:1 Term-Analysis12:2:3exportscontext-free syntax\Wsp" \[[" Spec \]]" ! Spec\Wt" \(" Sig \)" \[[" Term \]]" ! Term\We" \(" Sig \)" \[[" Eqs \]]" ! EqsequationsThe function `Wsp' assigns types to the terms in equations of a speci�cationusing its signature.[1] � = Sg(S)Wsp[[S ]] = signature �; equations We(�)[[E(S)]]Terms Functions and variables are annotated with their types in the signa-ture. The type of a pair is the product of the types of its arguments. The type250



Typechecking One-Level Speci�cations / 12.3of an application is the codomain of the type of the function.[2] �x(�) = �Wt(�)[[x]] = x : �[3] �f(�) = �Wt(�)[[f]] = f : �[4] Wt(�)[[t1]] = t3, Wt(�)[[t2]] = t4Wt(�)[[t1; t2]] = (t3; t4) : type(t3) � type(t4)[5] Wt(�)[[t1]] = t3, Wt(�)[[t2]] = t4Wt(�)[[t1 t2]] = t3 t4 : cod(type(t3))A term that is already partially annotated is handled by �rst assigning a typeto the term without its annotation and then comparing the derived annotationwith the given annotation.[6] Wt(�)[[t]] = t 0Wt(�)[[t : � ]] = if eq(type(t 0); � ) then t 0 else t 0 : �In case the given type and the derived type are equal, the annotated term isreturned. In case the types are di�erent, the term was inconsistently annotatedby the user. To be able to report this, the erroneous annotation is attachedto the already annotated term. The resulting term is not well-formed, whichwill be reported by equation [13] in Section 12.3.3. Observe that equation [6]guarantees that we can assign types to fully annotated terms. We have thatWt(�)[[Wt(�)[[t]]]] = Wt(�)[[t]], i.e., type assignment is idempotent.Terms constructed from `nil', `top', `�' and `!' are assigned the error type`nil', since these constructors cannot occur in well-formed terms.[7] Wt(�)[[nil]] = nil : nil[8] Wt(�)[[top]] = top : nil[9] Wt(�)[[t1 � t2]] = Wt(�)[[t1]] �Wt(�)[[t2]] : nil[10] Wt(�)[[t1 ! t2]] = Wt(�)[[t1]] !Wt(�)[[t2]] : nilEquations Both sides of an equation are assigned types.[11] We(�)[[t1 � t2]] = Wt(�)[[t1]] �Wt(�)[[t2]][12] We(�)[[]] =[13] We(�)[['+1 ; '+2 ]] = We(�)[['+1 ]] ++ We(�)[['+2 ]]In x12.3.2 we saw that well-formedness judgements identify the fully anno-tated terms that are well-formed with respect to a signature. The type assign-ment function de�ned in this section allows us to produce fully annotated termsfrom plain terms. The following proposition states that for any plain term thetype assignment function �nds a well-formed, full annotation if one exists. 251



12 / untyped and simply typed specificationsProposition 12.3.4 (Correctness of `Wt') The type assignment functionWt�nds a well-formed typing for a term if one exists, i.e., if t is a fully annotatedterm and � t̀erm t then Wt(�)[[spine(t)]] = t.Proof. by induction on terms. (Hint: equations [2] until [5] assign types toterms as required by [13] until [16] in x12.3.2.) 212.3.5 Typecheckingtypechecking can now be de�ned in terms of type assignment and well-formednesschecking. We de�ne three typecheck functions. The �rst checks a term againsta signature, the second checks a list of equations against a signature and thelast checks a complete speci�cation. The functions are de�ned in terms of well-formedness judgements (x12.3.2) and type assignment functions (x12.3.4).module OLS-TCimports OLS-NWF12:3:3 OLS-TA12:3:4exportscontext-free syntaxtc \(" Sig \)" \[[" Term \]]" ! EBooltc \(" Sig \)" \[[" Eqs \]]" ! EBooltc \[[" Spec \]]" ! EBoolequations[1] tc(�)[[t]] = s̀ig � ; � t̀erm Wt(�)[[t]][2] tc(�)[[E ]] = s̀ig � ; � èqs We(�)[[E ]][3] tc[[S ]] = s̀pec Wsp[[S ]]Now we have seen the complete speci�cation of a typechecker for a monomorphicapplicative language. In Chapter 14 we will repeat this exercise for a multi-levelpolymorphic speci�cation language.
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13Examples ofMulti-Level Speci�cationsA multi-level speci�cation consists of a list of numbered levels each of which isa speci�cation as encounterd in the previous chapter. To structure multi-levelspec�cations a module mechanism is provided to enable reuse of speci�cations.In this chapter we introduce the multi-level algebraic speci�cation formalismMLS by means of a number of examples motivated by datatype speci�cation.13.1 IntroductionIn the one-level framework of Chapter 12 the algebra of types used for thedeclaration of functions and variables is the subset of terms consisting of theclosure under product (�) and arrow (!) of a set of sort constants. In such aframework one has higher-order functions (due to the applicative term format)but no polymorphism and no user-de�nable type constructors.A two-level speci�cation is a pair of speci�cations, called level 1 and level 0.The signature of the level 1 speci�cation speci�es a set of terms (like a one-level signature would) that are used at level 0 as types. In other words thesignature at level 1 determines the type algebra of level 0. A type variablecan be instantiated to any type. A term that has a type containing variablesis polymorphic; it denotes all terms obtained by substituting ground types fortype variables. As in the one-level case, the type algebra of signatures at level 1is determined by the implicit signature generated from the sorts of level 1 andthe constructors (!) and (�).Multi-level speci�cations generalize two-level speci�cations by allowing arbi-trary many levels of speci�cations. The signature at level n uses terms fromthe signature at level n + 1 as types and determines the type algebra of thesignature at level n� 1. The types used in the highest level are members of theclosure of the sorts at that level under (�) and (!), i.e., there is an implicit sig-nature at the top that is generated by the sort declarations of the highest level.Figure 13.1 illustrates the concepts of one-level, two-level and multi-level speci-�cations. The arrow from a signature means that the terms over that signature253



13 / examples of multi-level specifications

signatureequations
implicit �;!signature

(a) One-level
signatureequationslevel 1
signatureequationslevel 0

implicit �;!signature

(b) Two-level

signatureequationslevel n
: : :signatureequationslevel 0

implicit �;!signature

(c) Multi-levelFigure 13.1: Speci�cations with one, two and multiple levels of signatures.are used at the target of the arrow.In Chapter 14 we de�ne the extension of one-level speci�cations to multi-levelspeci�cations. In this chapter we start with an extensive list of examples thatintroduce the key ideas of the formalism. The examples are motivated by datatype speci�cation. For examples of application of multi-level speci�cation tological frameworks see (Hearn and Meinke, 1994) and (Hearn, 1995).13.2 One LevelThe running example of x12.2 and x12.3, successor naturals with addition, can bespeci�ed as a one-level speci�cation. The declaration of sort nat generates theimplicit sort signature consisting of the basic sort nat and the sort operators (!)and (�). As a consequence, terms like nat, nat -> nat and nat # nat -> natare sorts that can be used in the signature that declares the functions composingthe algebra of natural numbers. The signature is summarized in the diagram inFigure 13.2(a).
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Two Levels / 13.3
nat

(+)

0

s(a) nat type (#) (->)(b) typeFigure 13.2: Signature diagrams of modules nat and typemodule natlevel 0signaturesorts nat;functions0 : nat;s : nat -> nat;(+) : nat # nat -> nat;variablesI, J : nat;equations0 + I == I;s(I) + J == s(I + J);13.3 Two LevelsJust like module nat de�nes a language of nat expressions, module type belowde�nes a language of type expressions built from type variables A, B and Cby means of the binary operators (->) and (#). Examples of such terms areA, A -> A, A # B -> A, etc. These terms have type type. The signature ofmodule type is summarized by the diagram in Figure 13.2(b).module typelevel 1signaturesorts type;functions(#), (->) : type # type -> type;variablesA, B, C : type;The di�erence between module nat and module type is that the signature oftypes is a level 1 signature. This entails that type expressions can be used assorts at level 0 in signatures of modules that import module type. 255



13 / examples of multi-level specifications13.3.1 Polymorphic FunctionsThe next module function introduces several polymorphic operations on func-tions. It �rst imports module type to use type expressions as sorts at level 0.The sorts declaration declares all expressions over level 1 that match the termA, as sorts. This means that all terms of type type can be used as sorts, butother terms over level 1 cannot (because A is a type variable). For instance,A -> A is a type expression, but (->), which is also a term over level 1, is not atype expression. Next, the module de�nes a number of common functions. Theidentity function i takes any value to itself. The function k creates a constantfunction k(X) that always yields X. The function s is a duplication functionthat copies its third argument. The composition G . H of two functions G andH applies G to the result of applying H to the argument of the composition.All these functions are polymorphic. The types of the functions contain typevariables, which can be instantiated to arbitrary type expressions. The signa-ture is actually an abbreviation of an in�nite signature, declaring each functionfor each possible instantiation of the type variables. For instance, if nat is a type(as we will de�ne in the next paragraph), then the instantiation i : nat -> natis the identity function on the natural numbers.module functionimports type;level 0signaturesorts A;functionsi : A -> A;k : A -> B -> A;s : (A -> B -> C) -> (A -> B) -> A -> C;(.) : (B -> C) # (A -> B) -> A -> C;variablesX : A; Y : B; Z : C; G : A -> B; H : B -> C;equationsi(X) == X;k(X)(Y) == X;s(X)(Y)(Z) == X(Z)(Y(Z));(G . H)(X) == G(H(X));Observe that the speci�cation in module function can also be considered asa logical framework in which the types are propositional logic formulas andthe types of the functions the axioms of propositional logic, together with theimplicit type of the application operator, which represents the modus ponensrule.13.3.2 Typing Natural NumbersIn module nat typed, the natural numbers as speci�ed in module nat are in-corporated in the world of types by declaring nat as a type constant. This256



Polymorphic Data Types / 13.4
type nat

(#) (->)

nat
s

0

(+)Figure 13.3: Signature diagram of module nat-typed.is illustrated by the diagram in Figure 13.3. This provides the polymorphicfunctionality de�ned for arbitrary types to natural numbers.module nat_typedimports function, nat;level 1signaturefunctionsnat : type;13.4 Polymorphic Data Types13.4.1 Cartesian ProductThe product A # B of two types A and B is the type of pairs (X, Y) of elements Xof A and Y of B. In MLS the pairing constructor function , is implicitly declaredas (,) : A # B -> A # B. This means that if at level n+1 a declaration for (#)is given, then at level n the constructor , is de�ned implicitly. The declarationis implicit because binary in�x operators are de�ned in terms of , by meansof the equation t1 � t2 = (�)(t1; t2). If , would be treated like an ordinarybinary operator this would lead to a circular de�nition t1; t2 = (; )(t1; t2) =(; )((; )(t1; t2))Module product de�nes a number of general functions on products. Theprojection functions exl and exr give the left and right elements of a pair.The product G # H of two functions is a function that applies the �rst functionto the �rst argument of a pair and the second function to the second argu-ment resulting in a new pair. The function split takes two functions thatsplit the values of a type C into the components of a pair. For instance, thefunction swap de�ned as (exr .split. exl) swaps the elements of a pair, i.e.,(exr .split. exl)(X, Y) == (Y, X).1 The function curry converts a binaryfunction (a function on pairs) into a curried binary function that �rst takes its�rst argument and returns a function that when applied to a second argument1Recall that T1 .T2. T3 can be written as an abbreviation of T2(T1,T2). 257



13 / examples of multi-level specificationsreturns the application of the function to its arguments. The function uncurryis the inverse of curry that uncurries a function, i.e., converts it from a curriedbinary function to a function on pairs. It is de�ned in terms of duplication,projection and composition. Finally, the function pair is the curried version ofthe built-in pairing operator (,).module productimports function;level 0signaturefunctionsexl : A # B -> A;exr : A # B -> B;(#) : (A -> B) # (A' -> B') -> (A # A') -> (B # B');split : (C -> A) # (C -> B) -> C -> A # B;curry : (A # B -> C) -> A -> B -> C;uncurry : (A -> B -> C) -> A # B -> C;pair : A -> B -> A # B;swap : A # B -> B # A;variablesX : A; Y : B; Z : C; G : A -> B; H : B -> C;equationsexl(X, Y) == X;exr(X, Y) == Y;(G # H)(X, Y) == (G(X), H(Y));(G .split. H)(X) == (G(X), H(X));curry(G)(X)(Y) == G(X, Y);uncurry(G) == s(G . exl)(exr);pair == curry(i);swap == (exr .split. exl);13.4.2 Disjoint SumThe disjoint union or sum A + B of two types A and B contains all elements fromA and B. The elements of both types are tagged by means of injection functionsinl and inr, such that their original type can be reconstructed and such thatthere are no clashes; the union of bool and bool contains two elements, whilethe sum bool + bool contains the four elements inl(t), inl(f), int(t) andinr(f). The sum G + H of two functions G and H is the function that takesthe sum of codomains to the sum of the domains of G and H by applying G toleft-tagged values and H to right-tagged values. The function case applies eitherof two functions with the same codomain depending on the tag of the value itis applied to.The signature diagram in Figure 13.4 illustrates the structure of the alge-bra. Due to polymorphism, the number of sorts of a speci�cation becomesin�nite. Therefore, signature diagrams do not provide an accurate description258



Polymorphic Data Types / 13.4
type

A + B A -> B
A

(->) (#) (+)

caseinrinl (+)Figure 13.4: Signature diagram of module sum.of the structure of the algebra described by a speci�cation. Nonetheless we willcontinue to use approximate signature diagrams to give insight in the examples.module sumimports function;level 1signaturefunctions(+) : type # type -> type;level 0signaturefunctionsinl : A -> A + B;inr : B -> A + B;(+) : (A -> B) # (A' -> B') -> (A + A') -> (B + B')case : (A -> C) # (B -> C) -> (A + B) -> C;equations(G + H)(inl(X)) == inl(G(X));(G + H)(inr(Y)) == inr(H(Y));(G .case. H)(inl(X)) == G(X);(G .case. H)(inr(Y)) == H(Y);13.4.3 ListsA list is a structure built by the functions [], the empty list, and (::) (cons)that adds an element to a list. A great number of generic functions have been de-�ned on lists, see for instance (Bird, 1987, 1989). Here we give some common listfunctions. The function (*) (map) applies a function G to each element of a list.The function (/) (fold right) takes a pair (G, Z) of a function and a constant toreplace the constructors [] and (::) such that (X1 :: ... :: (Xn :: [])) istransformed into (X1 .G. ... .G. (Xn .G. Z)). The function (\) (fold left)259



13 / examples of multi-level specificationsis similar to (/) but starts adding the elements at the left side of the list re-sulting in ((Z .G. X1) .G. ... .G. Xn). The fold operations can be seen assignature morphisms consisting of replacements for the list cons function andthe empty list. The function (++) concatenates the elements of two lists. Thefunction size gives the length of a list. The functions (++) and size are de�nedin terms of the fold functions (/) and (\). Finally, the function zip takes apair of lists into a list of the pairs of the heads of the lists.2module listimports product, nat_typed;level 1signaturefunctionslist : type -> type;level 0signaturefunctions[] : list(A);(::) : A # list(A) -> list(A);(*) : (A -> B) # list(A) -> list(B);(/) : (A # B -> B) # B -> list(A) -> B;(\) : (B # A -> B) # B -> list(A) -> B;size : list(A) -> nat;(++) : list(A) # list(A) -> list(A);zip : list(A) # list(B) -> list(A # B);variablesL : list(A);equationsG * [] == [];G * (X :: L) == G(X) :: (G * L);(G / Z)([]) == Z;(G / Z)(X :: L) == X .G. ((G / Z)(L));(G \ Z)([]) == Z;(G \ Z)(X :: L) == (G \ (Z .G. X))(L);size == (s . exl) \ 0;L1 ++ L2 == ((::) / L2)(L1);zip([], L) == [];zip(L, []) == [];zip(X :: L, X' :: L') == (X, X') :: zip(L, L');2Note that a variable declaration such as L : list(A) declares all variables with `base' Las list(A) variables, e.g., L1, L2 and L' are also declared by this declaration.260



Polymorphic Data Types / 13.4
type

lift

nat

stack

nat

(->) (#)

error
tops

stack(A,0) stack(A,s(0))

A

push

pop pop
...

empty pushtops
flag

pop

Figure 13.5: Signature diagram of module stratified-stack.13.4.4 Strati�ed StacksAll examples we have seen until now use only one sort (type) at level 1. Thenext module gives an example of a speci�cation that uses an additional sort atlevel 1.The data type of stacks can be speci�ed by means of (polymorphic) push,pop and top functions. A well-known disadvantage of the normal formulation isthat the top of the empty stack is either unde�ned or part of the type of stackelements, leading to a pollution of that type. All other operations that use thetype have to take account of the top of the empty stack as an additional element.Another solution is to take a default value from the type of stack elements asresult of the top of the empty stack. The problem of this solution is that thedistinction between failure and success of a partial function is lost.The solution of Hearn and Meinke (1994) is to `stratify' the type of stacks.The stack type constructor does not just construct a type from a type, but has anatural number as argument that records the number of elements on the stack.The type operator stack takes a type, which is the type of the elements on thestack, and a nat, which represents the height of the stack. The type of stacksis strati�ed into stacks with elements of type A and height 0 indicated by thetype stack(A,0), stacks of height s(0) indicated by the type stack(A,s(0)),etc. A new type constant error is introduced to represent errors. The usualstack operators are now typed as follows. The empty stack has type stack(A,0), i.e., is a polymorphic constant for stacks with arbitrary types of elementsand with height 0. The push function takes an A element and a stack of A'swith height I and produces a stack of A's of height s(I). The operations popand tops come in two variants, one for empty stacks and one for non-emptystacks. The top of an empty stack (which has type stack(A,0)) results in anerror element and not in an A. The error element is not added to the sort ofstack elements. 261



13 / examples of multi-level specificationsThe natural numbers in the types of stacks are used at level 1 while thespeci�cation in module nat speci�es naturals at level 0. This means that justimporting module nat is not enough to reuse the speci�cation. The reuse isachieved by the operation lift that increases all levels of its argument speci�-cation by 1. The signature diagram in Figure 13.5 gives an overview of thesignature in module stratified-stack.module stratified-stackimports types;lift(imports nat);level 1signaturefunctionserror : type;stack : type # nat -> type;level 0signaturefunctionsflag : error;empty : stack(A, 0);push : A # stack(A, I) -> stack(A, s(I));pop : stack(A, 0) -> stack(A, 0);pop : stack(A, s(I)) -> stack(A, I);tops : stack(A, 0) -> error;tops : stack(A, s(I)) -> A;variablesSt : stack(A, I);equationspop(push(X,St)) == St;tops(push(X,St)) == X;pop(empty) == empty;tops(empty) == flag;13.5 Three LevelsThe type expressions we have used so far are described by a signature at thehighest level of speci�cations. This entails that only type constructors overthe signature ftype; (!); (�)g can be constructed. This is not su�cient for alltype constructors. For instance, the type of tuples contains a list of types. Wecan provide more structure in the sort space of types just as we provided morestructure in the sort space of values, by building yet another level. Module kindintroduces the sort kind at level 2 and de�nes type to be a kind constant.
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Three Levels / 13.5module kindimports type;level 2signaturesorts kind;functionstype : kind;(#), (->) : kind # kind -> kind;variablesK : kind;level 1signaturesorts K : kind;From here on we can proceed by adding useful kind constructors to level 2 andusing them in the signatures at level 1. However, to construct tuples we needlists of types. Since there is not yet a de�nition of list : kind -> kind, wewould have to redo module lists but now one level higher. Since this is a waste oftime we use another approach. Module type-type also introduces the constanttype at level 2, but uses type itself as its type! The types de�ned in moduletype are used as kinds, by lifting the contents of that module. Now we canreuse all type constructors de�ned so far for level 1 at level 2, by simply liftingtheir speci�cation.module type-typelift(imports type);imports type;level 2signaturefunctionstype : type;13.5.1 TuplesLists and stacks are homogeneous data types that are parameterized by onesort. All elements of a list or stack are members of the same sort. A tuple onthe other hand is a heterogeneous structure with various types of elements. Inthe next module we de�ne a type constructor prod that constructs a general-ized product type from a list of types. To construct a list of types we importthe de�nition of level 0 lists and lift it to the level of types. Now we can usethe same polymorphic operations on lists that we de�ned before. A tuple isconstructed by means of the functions <> (empty tuple) and (^), which addsan element to a tuple. (Recall from x12.1.1 that <X1, ..., Xn> is an abbrevi-ation for X1 ^ ... ^ Xn ^ <>.) For instance, the tuple <0, [0], t> has typeprod([nat, list(nat), bool]). The �rst element of a tuple is given by exland the rest by exr. Observe that these functions are not partial: they areonly well-formed if applied to a non-empty tuple. Now the size of a tuple can263



13 / examples of multi-level specificationsbe determined by means of the function size that is polymorphic for all kindsof tuples.module tupleimports type-type, nat_typed;lift(imports list);level 1signaturefunctionsprod : list(type) -> type;variablesLT : list(type);level 0signaturesorts prod(LT);functions<> : prod([]);(^) : A # prod(LT) -> prod(A :: LT);exl : prod(A :: LT) -> A;exr : prod(A :: LT) -> prod(LT);size : prod(LT) -> nat;variablesP : prod(LT);equationsexl(X ^ P) == X;exr(X ^ P) == P;size(<>) == 0;size(X ^ P) == s(size(P))13.6 Type EquationsIn Hindley/Milner type systems it is not possible to construct the type of strat-i�ed stacks nor the type of tuples, because only one sort (type) can be used atthe level of types. Since the formalism is uniform at all levels, the levels spec-ifying type structure can contain equations over type expressions. This entailsthat operations on types can be speci�ed. This makes the speci�cation of ad-vanced type constructs possible as will be illustrated in this section. This can beexpressed in the MLS formalism, but is not supported by the MLS typecheckerde�ned in Chapter 14.13.6.1 Type De�nitionsAbbreviations are a �rst application of type equations. A type can be de�nedas a mnemonic abbrevation of a complicated type. For instance, the followingmodule de�nes the type of tables that associate keys with values as a list of pairsof keys and values. The function (.) is the lookup of a value associated with264



Type Equations / 13.6
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Figure 13.6: Signature diagram of module tuple with lifted list and type.a key. Its second argument is a pair consisting of the key and a default valuethat is produced when the key is not de�ned in the table. The (:=) functionupdates the value of a key in a table. The functions if and eq are de�ned inmodule bool.module tableimports list, bool;level 1signaturefunctionstable : type # type -> type;equationstable(A, B) == list(A # B);level 0signaturefunctions(.) : table(A, B) # (A # B) -> B;(:=) : table(A, B) # (A # B) -> table(A, B);equations[] . (X, Y) == Y;((X, Y) :: L) . (X', Y') == if(eq(X, X'))(Y)(L . X');[] := (X, Y) == [(X, Y)];((X, Y) :: L) := (X', Y') == if(eq(X, X'))(L := (X', Y'))((X, Y) :: (L := (X', Y')));This kind of type equations can be implemented by simply replacing each oc-curence of table(T1, T2) by its de�nition. 265



13 / examples of multi-level specifications13.6.2 Tuple ZipAnother class of type equations is formed by operations on types. Considerthe function zip that takes a pair of lists into a list of pairs. Its type can beexpressed aszip : list(A) # list(B) -> list(A # B)where list is the type constructor for the type of lists, # is the type constructorfor the type of pairs and A and B are type variables.The generalization of this function takes an n-tuple of lists into a list of n-tuples. In an untyped language such as Lisp this can easily be encoded. Typedfunctional programming languages such as Haskell (Hudak et al., 1992) cannoteven de�ne the type of tuples, let alone the type of the function zip for tuples.Instead for each n, upto the number that is thought necessary, a function zipnzipn : list(A1) # ... # list(An) -> list(A1 # ... # An)is de�ned together with its de�ning equations.Using the tuples of the previous section, the type of the function zip for tuplescan be expressed aszip : prod(list * LT) -> list(prod(LT))where (*) is the map function that a applies a function, in this case the typeconstructor list, to each element of a list. The map function is used to extractthe types of list elements in the argument tuple to transfer it to the resulttuple. The function (*) is a function that lives at level 1 (because of the liftingof module list) and is de�ned by means of the type equationsG * [] == []G * X :: L == G(X) :: G * LWell-formedness of an expression with zip involves the equality of types modulothese equations. For example, in the expressionzip(<[0, 2], [true, false], [[s(0)], [0, s(0)]]>)the equalityzip : prod(list * [nat, bool, list(nat)])-> list(prod([nat, bool, list(nat)]))=zip : prod([list(nat), list(bool), list(list(nat))])-> list(prod([nat, bool, list(nat)]))relates the type of the argument of zip to its declared type. The completede�nition of zip for tuples is given in the following module.266



Type Equations / 13.6module tuple-zipimports tuple, list, bool;level 0signaturefunctionszip : prod(list * LT) -> list(prod(LT));hds : prod(list * LT) -> prod(LT);tls : prod(list * LT) -> prod(list * LT);empty : prod(list * LT) -> bool;equationshds(<>) == <>;hds((X :: L) ^ P) == X ^ hds(P);tls(<>) == <>;tls([] ^ P) == [] ^ tls(P);tls((X :: L) ^ P) == L ^ tls(P);empty(<>) == false;empty([] ^ P) == true;empty((X :: L) ^ P) == empty(P);zip(P) == if(empty(P))([])(hds(P) :: zip(tls(P)));In order to reect the use of type equations in the type assignment for speci-�cations, E-uni�cation has to be applied. Given a set of equations E and twoterms t1 and t2, an E-uni�er is a substitution � such that E ` �(t1) � �(t2). Ifthe ti are ground terms this question reduces to E ` t1 � t2. Here E-uni�cationhas to be applied to unify the types of actual argument and domain type ofthe function zip given the equations for (*). For instance, consider the typeassignment of the termzip(L ^ (M ^ (N ^ P)))where L, M and N are list variables. The basic assignment to the components ofthis term arezip : tuple(list * LT1) -> list(tuple(LT1))(L ^ (M ^ (N ^ P))): tuple(list(A) :: list(B) :: list(C) :: LT2)Now we have to relate the domain of the function to the type of the argument,i.e., we have to solve the following uni�cation problem:tuple(list * LT1)== tuple(list(A) :: list(B) :: list(C) :: LT2)This means that we have to �nd a substitution such that these terms are equalconsidering the type equations for the map function: 267



13 / examples of multi-level specificationsG * [] == []G * (A :: LT) == G(A) :: (G * LT)A solution for the uni�cation problem is the substitution[LT1 := A :: B :: C :: LT3 LT2 := list * LT3]This leads to the type assignmentzip(L ^ (M ^ (N ^ P))) : list(tuple(A :: B :: C :: LT3))for the original term.The E-uni�cation problem is undecidable in general (see Jouannaud andKirchner (1991) for a survey of uni�cation), but for the equations of functionslike (*) it seems decidable. However, the type assignment function presentedin x14.4.2 does not consider equations over types.13.6.3 Tuple FunctorIn a similar manner we can de�ne the functor prod for tuples that takes a tupleof functions into a function on tuples such that the types in the domain tuplecorresponds to the domains of the functions and the codomain corresponds tothe codomains of the functions. This can be achieved by de�ning the function(->) on lists of types that zips together a list of domains and a list of codomainsinto a list of function types.module tuple-mapimports tuple;level 1signaturefunctions(->) : list(type) # list(type) -> list(type);equations[] -> LT == [];LT -> [] == [];(A :: LT1) -> (B :: LT2) == (A -> B) :: (LT1 -> LT2);level 0signaturefunctionsprod : prod(LT1 -> LT2) -> prod(LT1) -> prod(LT2);equationsprod(<>)([]) == [];prod(G ^ P)(X ^ P') == G(X) ^ prod(P)(P');13.6.4 Tuple CompositionAnother well-known problem is the construction of the composition of a tupleof functions into a new function. For instance, given three functions F, G and H,the composition of the tuple <F, G, H> is de�ned such that268



Type Equations / 13.6comp(<F, G, H>)(X) == H(G(F(X)))The type of this function can be speci�ed by means of a function comp atlevel 1 that transforms a list of types into a list of function types such that thecodomain of a function type is the domain of the next function type in the list.The function last is used to extract the last codomain from the list of typesmodule tuple-compositionlevel 1signaturefunctionscomp : list(type) -> list(type);last : type # list(type) -> type;equationscomp([]) == [];comp([A]) == [];comp(A :: B :: LT) == (A -> B) :: comp(B :: LT);last(A, []) == A;last(A, B :: LT) == last(B, LT);level 0signaturefunctionscomp : prod([]) -> A -> A;comp : prod(comp(A :: B :: LT)) -> A -> last(B, LT);equationscomp(<>)(X) == X;comp(G ^ P)(X) == comp(P)(G(X));

269



13 / examples of multi-level specifications13.6.5 Recursive TypesThe type de�nitions of the previous examples can be eliminated by simply ap-plying the equations as rewrite rule. The following example uses recursive typeequations to de�ne the type of binary trees in terms of disjoint sums and Carte-sian products. The abstract data type is de�ned by three functions that areexpressed in terms of the primitives on sums and products. The characteristicfunctions of sums are the left and right injection functions inl and inr and theselection function case. The functions for trees are leaf that constructs a leafnode from some value, (+) that combines to trees into a new tree and catathat builds a value from a tree by replacing its constructor functions by newfunctions.module rec_treeimports sum, product, bool, nat;level 1signaturefunctionstree : type -> type;equationstree(A) == A + (tree(A) # tree(A));level 0signaturefunctionsleaf : A -> tree(A);(+) : tree(A) # tree(A) -> tree(A);cata : (A -> B) # (B # B -> B) -> tree(A) -> B;equationsleaf(X) == inl(X);T1 + T2 == inr(T1, T2);cata(Zero, Plus) == Zero .case.(Plus . (cata(Zero, Plus).exl #cata(Zero, Plus).exr)It is clear that the de�nition of tree can not be eliminated by simple rewriting,since this leads to an in�nite term.13.6.6 Type ClassesAnother class of applications of equations over types is formed by constraints ontypes. The following module models the restriction of the polymorphism of theequality function by means of a type class like mechanism. The module importsmodule bool that de�nes the standard operations on the Boolean values t (true)and f (false). At level 1 a unary boolean function (a predicate) eq on types isde�ned such that the type nat is in the eq class and such that a list type is in theeq class if its content type is in the class. The operator (=>) constrains a type270



Type Equations / 13.6by some boolean condition. At level 0 the equality function eq is now declaredwith type eq(A) => (A # A -> bool), which expresses that the function onlyapplies to types in the eq class. The function (!) is used to apply a functionwith a constrained type to an argument. It requires that the condition is equalto t. This ensures that eq cannot be applied to function types or other typesnot in the eq class.module equalityimports type;lift(imports bool);imports list, nat_typed, bool_typed;level 1signaturefunctionseq : type -> bool;(=>) : bool # type -> type;equationseq(nat) == t;eq(list(A)) == eq(A);level 0signaturefunctions(!) : (t => A -> B) # A -> B;eq : eq(A) => (A # A -> bool);equationseq!(0, 0) == t;eq!(0, s(I)) == f;eq!(s(I), 0) == f;eq!(s(I), s(J)) == eq!(I, J);eq!([], []) == t;eq!(X :: L, []) == f;eq!([], X :: L) == f;eq!(X :: L, X' :: L') == eq!(X, X') /\ eq!(L, L');Here we conclude our introduction to MLS. In the next chapter we proceed toformalize the MLS language.
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14De�nition ofMulti-Level Speci�cationsIn this chapter we give a formal speci�cation of the syntax and semantics ofmulti-level speci�cations, including modular speci�cations and speci�cation op-erators such as `lift'. Typechecking of multi-level speci�cations di�ers at severalpoints from typechecking one-level speci�cations. First of all, types at level nare terms over the signature at level n + 1. Secondly, types can be polymor-phic. Finally, functions and variables can be overloaded, i.e., have more thanone declaration in a signature.14.1 Syntax and Equational LogicIn this section we de�ne the syntax of multi-level speci�cations and de�ne thesemantics of multi-level speci�cations.14.1.1 SyntaxA multi-level speci�cation is either empty, a level composed of a natural num-ber indicating the level and a speci�cation, or a concatenation of multi-levelspeci�cations.module MLSimports OLS12:2:4 NaturalsB:1:4exportssorts MLScontext-free syntax! MLS\level" Nat Spec ! MLSMLS \;" MLS ! MLS fleftg\(" MLS \)" ! MLS fbracketgprioritiesSig \;"Sig ! Sig > MLS \;"MLS ! MLSvariables\�"[0-9 0]� ! MLS 273



14 / definition of multi-level specificationsArrow and Product Functions Since types are terms over a signature, theconstructors arrow and product must also be declarable. For this purpose thefunctions (!) and (�) are introduced with the same notation as used to makeother in�x operators into pre�x functions.exportscontext-free syntax\(!)" ! Fun\(�)" ! FunSpeci�cation Projections As for the OLS case we de�ne several projectionfunctions for decomposing speci�cations. Most noteworthy is the function `up'that gives a speci�cation without its lowest level. The projection function �ngives the speci�cation at level n. The function `lift' increases the level indicatorsof all levels by 1. The function `drop' decreases the indicators of all levels byone and removes the speci�cation at level 0.exportscontext-free syntax\�" \ " Nat \(" MLS \)" ! Specmax(MLS) ! Natlift(MLS) ! MLSdrop(MLS) ! MLSup(MLS) ! MLStop-sig ! MLSdecl(Terms, Term) ! DeclsequationsLevel concatenation is normalized to a left-associative list. An empty levelis equivalent to an empty speci�cation. The empty speci�cation is a unit forcomposition.[1] �1; (�2; �3) = �1; �2; �3 [2] ; � = �[3] level n = [4] �; = �The projection �n gives the n-th level of a speci�cation.[5] �n() =[6] �n(level n S) = S[7] �n(level m S) = when eq(n; m) = ?[8] �n(�1; �2) = �n(�1); �n(�2)The function `max' gives the index of the highest level of a speci�cation. Notethat `max' is also the maximum function on natural numbers.[9] max() = 0[10] max(level n S) = n when S 6=[11] max(�1; �2) = max(max(�1); max(�2))274



Syntax and Equational Logic / 14.1Any speci�cation is equal (modulo commutativity of `;') to the concatenationof all levels, i.e., for any speci�cation �:� = level max(�) �max(�)(�); : : : ; level 1 �1(�); level 0 �0(�)The function `lift' increments all levels by one.[12] lift() =[13] lift(level n S) = level succ(n) S[14] lift(�1; �2) = lift(�1); lift(�2)The function `drop' lowers all levels by one level and drops the lowest level.[15] drop() =[16] drop(level 0 S) =[17] drop(level n S) = level pred(n) S when zero(n) = ?[18] drop(�1; �2) = drop(�1); drop(�2)For �, `lift' and `drop' we have (modulo associativity and commutativity of `;')[19] lift(drop(�)); level 0 �0(�) = �A multi-level speci�cation can be considered as a stack of speci�cations, with`drop' as the pop operation and �0 as top. The term lift( ); level 0 correspondsto pushing a speci�cation on the stack.The constant `top-sig' is the implicit signature that determines the sorts ofthe highest signature.[20] top-sig = level 0 signature functions (�); (!) : top � top ! topThe operation `up' is like `drop' with an extra property. In case level 0 is notthe highest level, i.e., max is not equal to 0, then `up' just drops level 0. Iflevel 0 is the highest level, `up' is the signature `top-sig' extended with the sortsof the highest level declared as constants of type `top'. This is the implicitsignature of the types used at the highest level of a speci�cation. Observe thatif max(�) = 0, then after one iteration up(up(�)) = up(�).[21] up(�) = top-sig; level 0 signature functions decl(S(Sg(�0(�))); top)when zero(max(�)) = >[22] up(�) = drop(�) when zero(max(�)) = ?The function `decl' constructs a list of declarations from a list of terms and asort. It is used in the de�nition of `up' above to create a declaration for eachsort of the highest level. Only the function constants in the list are declared.[23] decl(; � ) =[24] decl(f; � ) = f : �[25] decl(t+1 ; t+2 ; � ) = decl(t+1 ; � ) ++ decl(t+2 ; � )[26] decl(t; � ) = otherwise 275



14 / definition of multi-level specifications14.1.2 NormalizationAccording to the syntax of signatures and multi-level speci�cations, speci�-cation elements like levels, signatures and declarations can be written in anyorder and can be repeated. For instance, a speci�cation can contain severalsections for level 0 and a signature can contain several functions sections.The function `norm' below normalizes a speci�cation such that the levels arepresented in decreasing order and speci�cations consists of one signature sectionand one equations section. Furthermore, signatures are normalized such thatthey contain a single sorts, functions and variables section. Finally, redundantdeclarations, sort declarations and equations are removed.module MLS-Normimports MLS14:1:1exportscontext-free syntaxnorm(MLS) ! MLSnorm(Spec) ! Specequations[1] norm(�) = level 0 norm(�0(�)) when max(�) = 0[2] norm(�) = lift(norm(drop(�))); level 0 norm(�0(�))when zero(max(�)) = ?[3] norm(S) = signature � 0; equations E(S)when Sg(S) = �,� 0 = sorts S(�);functions F(�);variables V(�);[4] d�1; d; d�2; d; d�3 = d�1; d; d�2; d�3[5] sorts t�1; t; t�2; t; t�3 = sorts t�1; t; t�2; t�3[6] equations '�1; '; '�2; '; '�3 = equations '�1; '; '�2; '�314.1.3 Multi-Level Equational LogicWe rede�ne equational logic for multi-level speci�cations. An equation is anaxiom if it is an equation at level 0. The equations at higher levels apply totype annotations; in equation [2] it is stated that two annotated terms are equalif their term parts are equal and if the annotations are equal with respect to thenext level.
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Modular Speci�cations / 14.2module ML-Equational-Logicimports MLS14:1:1 SubstitutionB:2:7exportscontext-free syntaxMLS \`" Eq ! Boolequations[1] E(�0(�)) = '�1; t1 � t2; '�2� ` t1 � t2 = >[2] � ` t1 � t2 = >, up(�) ` � 1 � � 2 = >� ` t1 : � 1 � t2 : � 2 = >The standard rules for reexivity, symmetry, transitivity, substitution and con-gruence for the other binary term operators (application, pair, arrow and prod-uct) are not shown.If only free constructors (functions over which no equations are de�ned) areused in type annotations, then the types �i in equation [2] have to be syn-tactically equal. In that case multi-level equational logic reduces to the typedequational logic of x12.2.5 and we have� ` t1 � t2 = �0(�) ` t1 � t2Under the same assumption, term rewriting with a multi-level speci�cationreduces to the typed term rewriting of x12.2.5. Rewriting of annotated termsin a system with type equations is more complicated because E-matching isneeded. Given a set of equations E , term t1 E-matches term t2 if there exists asubstitution � such that E ` �(t2) � t1.Meinke (1992a) gives an equational logic for two levels of equations similarto the multi-level equational logic above. Meinke (1993) considers the rewriterelation resulting from a set of equations over terms and types by taking thetransitive, reexive closure of the equations considered as rewrite rules in bothdirections.14.2 Modular Speci�cationsWe de�ne a simple modularization scheme based on syntactic inclusion. It addsconsiderably to the expressive power of the language by the ability to share spec-i�cations at more than one level, as we saw in the examples in x13.1. A modulebinds a multi-level speci�cation to a module name. An import is a reference tothe body of a module. It denotes the speci�cation that would be obtained byreplacing the import by the module body. Name clashes between functions im-ported from di�erent modules are not problematic, because overloading permitssuch functions to coexist. Functions from di�erent origins with identical namesand types are identi�ed. Although this seems a reasonable choice, extensionwith renaming operators would be useful, but is not further considered here.277



14 / definition of multi-level specificationsmodule MMLSimports MLS14:1:1 MLS-Norm14:1:2exportssorts Module Modulescontext-free syntax\imports" fFun \;"g� ! MLS\module" Fun MLS \;" ! ModuleModule� ! ModulesModules \++" Modules ! Modules frightg� \ " Fun \(" Modules \)" ! MLSvariables\M "[0-9 0]� ! Module\M "\�"[0-9 0]� ! Module�\M "\+"[0-9 0]� ! Module+equationsConcatenation of module lists[1] M�1 ++ M�2 = M�1 M�2A list of imports denotes the concatenation of the imported speci�cations.[2] imports f+1 ; f+2 = imports f+1 ; imports f+2The projection of a module name in a list of modules yields the module body. Ifmore than one module with the same name exists, the bodies are concatenated.[3] �f() =[4] �f(module f �;) = �[5] �f(module f 0 �;) = when eq(f; f 0) = ?[6] �f(M+1 M+2 ) = �f(M+1 ); �f(M+2 )Note that the function �f is overloaded: lookup of the type of a function in alist of declarations and lookup of a module in a list of modules.Modules have a simple syntactic replacement semantics. The normalizationfunction `at' attens all modules in a list of modules, by replacing imports bymodule bodies.imports Term-SetsB:2:5exportscontext-free syntaxat \(" Modules \)" ! Modulesat \(" Modules \)" \[[" Modules \]]" ! Modulesat \(" Modules \;" TermSet \)" \[[" MLS \]]" ! MLSequationsThe unary function `at', attens the body of each module in a list of moduleswith respect to the entire list of modules.[7] at(M �) = at(M �)[[M �]]278



Well-Formedness / 14.3[8] at(M �)[[]] =[9] at(M �)[[M+1 M+2 ]] = at(M �)[[M+1 ]] ++ at(M �)[[M+2 ]][10] at(M �)[[module f �;]] = module f norm(at(M �; fg)[[�]]);An import of a module is replaced by its body. The imports in the body ofa module have to be attened in turn. A loop caused by cyclic imports isprevented by adding the module name to the set of modules already seen (thesecond argument of function `at'). An import is not expanded if a module wasalready imported (equation [12]).[11] f 2 � = ?at(M �; �)[[imports f]] = at(M �; � [ ffg)[[�f(M �)]][12] f 2 � = >at(M �; �)[[imports f]] =Imports inside other constructs are replaced by distributing `at' over all op-erators except `imports'. Consider, for example, the expression lift(importslist) in x13.5.1. Since `lift' is not de�ned on imports, the imported modulehas to be substituted before lifting can be performed.[13] at(M �; �)[[�]] = when � =[14] at(M �; �)[[�1; �2]] = at(M �; �)[[�1]]; at(M �; �)[[�2]][15] at(M �; �)[[level n S ]] = level n at(M �; �)[[S ]][16] at(M �; �)[[�n(�)]] = �n(at(M �; �)[[�]])[17] at(M �; �)[[lift(�)]] = lift(at(M �; �)[[�]])[18] at(M �; �)[[drop(�)]] = drop(at(M �; �)[[�]])[19] at(M �; �)[[up(�)]] = up(at(M �; �)[[�]])[20] at(M �; �)[[max(�)]] = max(at(M �; �)[[�]])The function `at' has to consider all projection operations on speci�cationsand has to be extended to all sorts embedded in speci�cations by means ofdistribution equations like the ones above. These equations are not shown.14.3 Well-FormednessIn this section and the next we de�ne a typechecker for multi-level speci�cationsfollowing the same approach as for one-level speci�cations. Well-formedness offully annotated multi-level speci�cations is de�ned in x14.3.2. Rules for thecomplementary cases produce error messages for non-wellformed constructs inx14.3.3. Type assignment functions, de�ned in x14.4.1 and x14.4.2, producea fully annotated speci�cation for a plain speci�cation an example of whichis shown in Figure 14.1. Finally, the typechecker is de�ned in x14.5 as thecomposition of type assignment and well-formedness checking.Typechecking of multi-level speci�cations di�ers at several points from type-checking one-level speci�cations. First of all, types at level n are terms over279



14 / definition of multi-level specificationsthe signature at level n+1. Secondly, types can be polymorphic. Finally, func-tions and variables can be overloaded, i.e., have more than one declaration in asignature.14.3.1 ProjectionWe de�ne a new projection function that �nds the type of a function or variablein a list of declarations. The di�erence with the projection function from x12.3.1is that the function yields the set of all types that are assigned to the functionor variable, instead of the �rst type. If no declaration exists the empty set isproduced. Furthermore, � takes a set of function or variable names as �rstargument and yields the set of all types for all functions or variables in the set.module MLS-Projectionimports MLS14:1:1 RenamingB:2:10 Term-SetsB:2:5exportscontext-free syntax\�" \ " TermSet \(" Decls \)" ! TermSet\�" \ " Var \(" MLS \)" ! TermSet\�" \ " Fun \(" MLS \)" ! TermSetequationsThe projection function � �nds the types of a set of functions or variables in alist of declarations.[1] ��() = fg[2] ��(f : � ) = if f 2 � then f�g else fg[3] ��(x : � ) = if x 2 � then f�g else fg[4] ��(d+1 ; d+2 ) = ��(d+1 ) [ ��(d+2 )The projection function � applied to a speci�cation �nds the type of a functionor variable in the function or variable declarations of the signature of the lowestlevel.[5] �f(�) = �ffg(F(Sg(�0(�))))[6] �x(�) = �fx; base(x)g(V(Sg(�0(�))))In case of a variable not only the type of the variable, but also the type of its`base' (variable without trailing digits or primes; see xB.2.10) is looked for. Thismakes it possible to use many variants of a variable with only one declaration.For example, if A : type is declared, then A1, A2, A' : type are implicitlydeclared as well. This facility encourages a consistent use of variable names.14.3.2 Well-FormednessAs in the one-level case in x12.3.2, the well-formedness of fully annotated termsand speci�cations is de�ned by several well-formedness judgements|functionsthat yield an error Boolean value. An example of a fully annotated two-levelspeci�cation is shown in Figure 14.1.280



Well-Formedness / 14.3level 1signaturesorts type ;functions(->) : type # type -> type ;variablesA : type; B : type; C : type ;level 0signaturesorts A : type;functionsk : (A : type)-> ((B : type) -> (A : type) : type) : type;variablesX : A : type;Y : B : type;equations((k : (A : type)-> ((Q : type) -> (A : type) : type) : type)(X : A : type) : (Q : type ) -> (A : type) : type)(Y : Q : type) : A : type== X : A : typeFigure 14.1: Example of a fully annotated two-level speci�cation. Observe thatthe types at level 0 are fully annotated terms over level 1.module MLS-WFMLS14:1:1 MLS-Projection14:3:1 Error-BooleansB:1:3 SPEC-ErrorsB:2:2MLS-TA-Aux14:4:1 MatchingB:2:8 Term-Analysis12:2:3exportscontext-free syntax\ m̀ls" MLS ! EBoolMLS \ s̀pec" Spec ! EBoolMLS \ s̀ig" Sig ! EBoolMLS \ s̀orts" Terms ! EBoolMLS \ d̀ecls" Decls ! EBoolMLS \ s̀ort" Term ! EBoolMLS \ t̀rm" Term \:" Term ! EBoolMLS \ t̀erm" Term ! EBoolMLS \ èqs" Eqs ! EBoolequationsA multi-level speci�cation is well-formed if each level is well-formed. The en-vironment in which a speci�cation is checked includes the speci�cation itself281



14 / definition of multi-level specificationsbecause that may contain relevant sort declarations.[1] m̀ls � = � s̀pec �0(�) when max(�) = 0[2] m̀ls � = m̀ls up(�) ; � s̀pec �0(�)when zero(max(�)) = ?A speci�cation is well-formed if both the signature and the equations are well-formed. The errors in the equations generally depend on errors in the signature.Therefore equation [3] gives precedence to signature errors over equation errors.[3] � s̀pec S = � s̀ig Sg(S) ; � èqs E(S)A signature is well-formed if the sorts section contains well-formed sort decla-rations and if the function and variable declarations are well-formed.[4] � s̀ig � = � s̀orts S(�) ; � d̀ecls F(�) ^ � d̀ecls V(�)The terms in a sort declaration at level n should be well-formed terms overlevel n+ 1.[5] up(�) t̀erm � = >� s̀orts � = >[6] � s̀orts � +1 ; � +2 = � s̀orts � +1 ^ � s̀orts � +2[7] � s̀orts = >A function or variable declaration is well-formed if its type is a well-formed sort.[8] � d̀ecls x : � = � s̀ort �[9] � d̀ecls f : � = � s̀ort �[10] � d̀ecls = >[11] � d̀ecls d+1 ; d+2 = � d̀ecls d+1 ^ � d̀ecls d+2Sorts A term is a sort at level n if it is a term over level n + 1, and if itmatches one of the terms declared as sort at level n.[12] zero(max(�)) = ?, fS(Sg(�0(�)))g m� t = >� s̀ort t = up(�) t̀erm tThe predicate �m� t (xB.2.8) tests whether a term t matches one of the elementsof a set of terms �, in this case the set of sorts declared at level 0.For a term to be a sort at the highest level it is su�cient to be a term overthe next (implicit) level.[13] zero(max(�)) = >� s̀ort t = up(�) t̀erm tOtherwise all terms from the closure of the basic sorts under arrow and productthat are used in function and variable declarations, would have to be declaredexplicitly as sorts.282



Well-Formedness / 14.3Terms A complication with respect to the one-level case is that sorts arealso annotated, except for the sorts at the highest level. We could solve thisproblem by introducing two di�erent well-formedness predicates. Instead weuse one predicate and the implicit annotation of terms with `top'. The auxiliaryjudgement t̀rm is introduced to treat explicitly and implicitly annotated termsin the same way. The annotation of a term is constructed explicitly by splittingit in its term and type. This has the e�ect that terms that are annotatedimplicitly with `top' can be treated in the same way as terms with explicitannotations.[14] � t̀erm t = � t̀rm term(t) : type(t)The term `top' has type `top'. Since `top' can not be declared as a function,this is the only possible type it can have.[15] � t̀rm top : top = >The types of functions and variables should be well-formed sorts. The type of afunction should match one of the types with which it is declared. If a variable isdeclared, its type should match one of its declared types. Variables are allowedto be undeclared. The reason for this exception is that the type assignmentalgorithm has to invent new variables in some cases to prevent name clashes. Aresult of this choice is that variables can be used without declaration, if somereasonable type can be inferred for it from the context, or if it is given somesuitable annotation.[16] �f(�) m� � = >� t̀rm f : � = >[17] �x(�) = �, � m� � _ empty(�) = >� t̀rm x : � = � s̀ort �A pair is well-formed if its type is the product of the types of its left andright components. An application is well-formed if the type of the argumentmatches the type of the domain of the type of the function and if the type ofthe annotation matches the type of the codomain.[18] term(� ) = type(t1) � type(t2)� t̀rm t1; t2 : � = � t̀erm t1 ^ � t̀erm t2[19] term(type(t1)) = type(t2) ! �� t̀rm t1 t2 : � = � t̀erm t1 ^ � t̀erm t2Products and arrows are well-formed if their pre�x versions (�) and (!) aredeclared in the signature as binary functions. The product of the types of thearguments t1 and t2 should be the domain and the annotation � should be thecodomain of the declaration of the function. This is checked in the same wayas the annotation of a function is checked by matching the annotation of the283



14 / definition of multi-level specificationsfunction to one of its declarations. Because the type of the product or arrow isreconstructed, it is not clear what the annotations for the product and arrowin the types of (�) and (!) should be. For this purpose, the function `bterm'(x12.2.3) is used to strip the annotation from the declared types.[20] bterm�(�(�)(�)) m� type(t1) � type(t2) ! � = >� t̀rm t1 � t2 : � = � t̀erm t1 ^ � t̀erm t2[21] bterm�(�(!)(�)) m� type(t1) � type(t2) ! � = >� t̀rm t1 ! t2 : � = � t̀erm t1 ^ � t̀erm t2Equations An equation is well-formed if both sides have the same type, thevariables of the right-hand side are contained in the variables of the left-handside and all occurrences of a variable on both sides have the same type.[22] type(t1) = type(t2), vars(t2) � vars(t1) = >,var-types(avars(t1; t2)) = []� èqs t1 � t2 = � t̀erm t1 ^ � t̀erm t2[23] � èqs = >[24] � èqs '+1 ; '+2 = � èqs '+1 ^ � èqs '+2The following proposition states that equality according to a well-formed spec-i�cation is type preserving, i.e., a term can only be equal to another term if theyhave the same type.Proposition 14.3.1 (Type Soundness) Equational logic is type preservingfor well-formed speci�cations: Let � be a fully annotated multi-level speci�cationsuch that declarations in � use only free type constructors. If m̀ls � and � t̀ermti then �0(�) ` t1 � t2 implies type(t1) = type(t2).Proof. Since � is well-formed, all equations in �0(�) have equal types in theleft-hand side and right-hand side and typed equational logic is type preservingfor equations with that property (Proposition 12.2.1). 2The following proposition relates equalities over plain terms to equalities overfully annotated terms.Proposition 14.3.2 Equational derivability in a fully annotated speci�cationimplies equational derivability in the plain speci�cation: Let � be a fully anno-tated multi-level speci�cation such that declarations in � use only free type con-structors and such that m̀ls �, then � ` t1 � t2 implies spine(�) ` spine(t1) �spine(t2)In x14.4.3 we discuss the requirements for the reverse implication; when doesequality in the plain speci�cation preserve types?284



Type Assignment / 14.414.3.3 Non-wellformedness (MLS-NWF)The generation of error messages for the non-wellformed cases is very similar tox12.3.3, therefore only the case of a non-wellformed application is presented.module MLS-NWFimports MLS-WF14:3:2 SPEC-ErrorsB:2:2equations[1] � t̀rm t1 t2 : �= (� t̀erm t1 ^ � t̀erm t2); application " spine(t1 t2) " not well-formed:: if : A! B m� term(type(t1))then " spine(t1) " is not a functionelse if : eq(dom(term(type(t1))); type(t2))then type of argument " type(t2)" does not match type of domain " dom(term(type(t1))) "else type of result " spine(� )" does not match type of codomain " cod(term(type(t1))) "otherwise14.4 Type AssignmentIn the next section we will de�ne the type assignment functions for the multi-level case. First, we de�ne several auxiliary functions that are needed for thede�nition of type assignment.14.4.1 PreliminariesThe two major complications in type assignment for multi-level speci�cationsare overloading and polymorphism.Overloading caused by multiple declarations of variables and functions leadsto multiple fully annotated terms for a single plain term. Therefore, the typeassignment function for terms yields a set of annotated terms instead of a singleterm. To assign types to a composite term such as an application, �rst the sub-terms are assigned types, resulting in a pair of sets of terms. Each combinationfrom the two sets can form a well-formed application. Therefore, each term inthe Cartesian product of the two sets has to be considered.Join To handle polymorphism correctly, type variables of terms composedby application, pairing etc. have to be renamed before types can be compared,because types are implicitly universally quanti�ed. The function ./ (join) com-bines the function of renaming type variables and producing the cartesian prod-uct of two sets. Given two sets �1 and �2 it renames the type variables in the285



14 / definition of multi-level specificationsterms in the two sets leading to sets �3 and �4 such that the type variables aredisjunct, i.e., tvars(�3) \ tvars(�4) = fg. The operation rn�[�0], given a set ofvariables �0, produces a renaming of the variables in the set � such that theydo not occur in �0 (see xB.2.10). The result of the operation is the Cartesianproduct �3 � �4, i.e., the set of all pairs (t1; t2) of elements from t1 2 �3 andt2 2 �4 (see also xB.2.5).module MLS-TA-Auximports RenamingB:2:10exportscontext-free syntaxTermSet \./" TermSet ! TermSet fnon-assocgequations[1] vars(�2) = � 02, rn tvars(�1) \ � 02[vars(�1) [ � 02]�(�1) = �3,vars(�3) = � 03, rn tvars(�2) \ � 03[� 02 [ � 03]�(�2) = �4�1 ./ �2 = �3 � �4Selection Once two sets of terms have been joined, the well-formed pairshave to be selected and given a type annotation. This involves tests and typeforming operations for each construct applying the test to each element in theset of pairs thereby keeping only the correct ones. This last aspect can bespeci�ed generically for all constructs. For each construct we use a function ofsort (Term) Bool�TermSet)1, which given a term produces a pair of a Booleanvalue indicating whether the term is well-formed and a set of terms resultingfrom assigning a type to that term. This function can be mapped over a setof terms resulting from the join of two type-assignments by the function `�'. Itapplies the function to each element of the argument set remembering whethera well-formed term was already encountered. If at the end of the list none of thecombinations turns out to be well-formed, then the last, non-wellformed one, isreturned. This guarantees that type assignment always returns a term. Fromthis non-wellformed term the well-formedness judgements can �nd out the causeof the error.imports Term-Analysis12:2:3 Term-FunctionsB:2:3exportssorts (Bool� TermSet) (Term) Bool� TermSet)context-free syntax\h" Bool \;" TermSet \i" ! (Bool� TermSet)(Term) Bool� TermSet) \(" Term \)" ! (Bool� TermSet)(Term) Bool� TermSet)\�" \(" TermSet \)" ! TermSet(Term) Bool� TermSet)\�" \(" Bool \;" TermSet \)" ! TermSetvariables1Note that we instructed ToLATEX to typeset the sort identi�er Term2BoolXTermSet as(Term) Bool�TermSet)286



Type Assignment / 14.4\G"[0-9 0]� ! (Term) Bool� TermSet)equations[2] G�(�) = G�(?, �)[3] G�(b, fg) = fg[4] G�(b, ftg) = if b ^ : b 0 then fg else � when G(t) = hb 0, �i[5] G�(b, ft; t+g) = (if b 0 then � else fg) [ G�(b _ b 0, ft+g)when G(t) = hb 0, �iFor functions of sort (Term) Bool�Eqs), which yield a list of equations insteadof a set of terms, similar functions are de�ned.Annotation with a Set of Types Due to overloading, the result of assigninga type to a term is a set of terms instead of a single term. This means thatthe assignment of types in declarations and type annotations also leads to a setof types. These should be translated to lists of declarations and sets of terms,respectively. The following functions can be used to construct the declarationof a function or variable or the annotation of a term with a set of terms. Theambiguity in a declaration is translated to multiple declarations for the functionor variable, i.e., f : f�1; �2g = f : �1; f : �2. The annotation of a term with a setof terms is translated to the set of the term with all the annotations from theset.imports MLS14:1:1exportscontext-free syntaxFun \:" TermSet ! DeclsVar \:" TermSet ! DeclsTerm \:" TermSet ! TermSetprioritiesTerm \:"TermSet ! TermSet > TermSet \["TermSet ! TermSet[6] f : fg =[7] f : ftg = f : t[8] f : ft+1 ; t+2 g = f : ft+1 g ++ f : ft+2 g[9] x : fg =[10] x : ftg = x : t[11] x : ft+1 ; t+2 g = x : ft+1 g ++ x : ft+2 g[12] t : fg = ft : nilg[13] t : f�g = ft : �g[14] t : ft+1 ; t+2 g = t : ft+1 g [ t : ft+2 gVariable Type Consistency The function `var-types' checks whether the typesof the variables in a set of terms of the form x : � (annotated variables) are con-sistent, i.e., two occurrences of a variable should have types that are uni�able.If this is the case the function returns a substitution that makes the types of all287



14 / definition of multi-level specificationsoccurrences of the same variable equal. The function is used as follows: Givena term t, var-types(avars(t)) either gives ?, which indicates that t containstwo occurrences of the same variable with incompatible type annotations or asubstitution � that makes all occurrences of the same variable in t the same.imports Uni�cationB:2:9exportscontext-free syntaxvar-types(TermSet) ! Subst?var-eqs(TermSet) ! Eqsequations[15] var-types(�) = mgu(var-eqs(�))[16] var-eqs(fg) =[17] var-eqs(fx : � 1; t�1; x : � 2; t�2g) = �1 � � 2 ++ var-eqs(ft�1; x : �2; t�2g)[18] var-eqs(fx : � 1; t �g) = var-eqs(ft �g) otherwiseNew Variables The function `new-var' generates a variable name that is notdeclared in the signature at level 0. Given a set of variables � `nv' picks the�rst element of � that is not declared in �. If all variables are declared, thevariables in � are renamed by prepending an extra letter (Q) to each variablein �.imports MLS-Projection14:3:1exportscontext-free syntaxnew-var \(" MLS \)" ! Termnv \(" MLS \)" \(" TermSet \;" TermSet \)" ! Termequations[19] new-var(�) = nv(�)(fg; fg)[20] nv(�)(�; fg) = nv(�)(� 0; � 0) when � 0 = add(Q; �)[21] nv(�)(�; fx; t �g) = if empty(�x(�)) then x else nv(�)(�; ft �g)14.4.2 Type AssignmentThe basic ideas for type assignment of multi-level speci�cations are similar tothe one-level case. For instance, the type of an application is the codomain ofthe �rst (function) argument. The complications are caused by the multi-levelaspect (types are typed terms), overloading and polymorphism. The basic ideain dealing with overloading is to create a set of all possible typings for each term;type assignment function `Wt' returns a TermSet. When terms are combined,all possible combinations of the associated sets have to be considered. The joinand select functions of the previous section are applied for this purpose.Type assignment of multi-level speci�cations proceeds by �rst annotating thehigher levels and using the resulting annotated speci�cation to assign types to288



Type Assignment / 14.4the signature at level 0. The resulting signature can be used to assign types tothe equations at level 0.module MLS-TAimports MLS14:1:1 MLS-TA-Aux14:4:1 MLS-Projection14:3:1Term-Analysis12:2:3 MatchingB:2:8exportscontext-free syntax\Wm" \[[" MLS \]]" ! MLS\Wsp" \(" MLS \)" \[[" Spec \]]" ! Spec\Wsg" \(" MLS \)" \[[" Sig \]]" ! Sig\Wd" \(" MLS \)" \[[" Decls \]]" ! Decls\Ws" \(" MLS \)" \[[" Term \]]" ! TermSet\Wss" \(" MLS \)" \[[" Terms \]]" ! Terms\Wtv" \(" MLS \)" \[[" Term \]]" ! TermSet\Wt" \(" MLS \)" \[[" Term \]]" ! TermSet\Wts" \(" MLS \)" \[[" Terms \]]" ! Terms\We" \(" MLS \)" \[[" Eqs \]]" ! EqsequationsAssigning types to a speci�cation consists of assigning types to all levels of thesignature and using the resulting signature to assign types to the equations.[1] zero(max(�)) = >Wm[[�]] = level 0 Wsp(lift(up(�)))[[�0(�)]][2] zero(max(�)) = ?, lift(Wm[[up(�)]]) = � 0Wm[[�]] = � 0; level 0 Wsp(� 0)[[�0(�)]]A speci�cation is annotated by �rst annotating the signature using the higherlevels and then annotating the equations using the higher levels extended withthe annotated signature.[3] Wsg(�)[[Sg(S)]] = �, � 0 = level 0 signature �Wsp(�)[[S]] = signature �; equations We(�; � 0)[[E(S)]]Assign types to each section of a signature.[4] sorts Wss(�)[[S(�)]] = �2, � 0 = �; level 0 signature �2Wsg(�)[[�]] = �2;functions Wd(� 0)[[F(�)]];variables Wd(� 0)[[V(�)]]The sorts in the declarations of sorts, functions and variables are treated asterms over the signature at the next level.[5] Wd(�)[[]] =[6] Wd(�)[[f : � ]] = f : Ws(�)[[� ]][7] Wd(�)[[x : � ]] = x : rn vars(�)[fxg]�(�)when Ws(�)[[� ]] = �[8] Wd(�)[[d+1 ; d+2 ]] = Wd(�)[[d+1 ]] ++ Wd(�)[[d+2 ]] 289



14 / definition of multi-level specificationsSorts A sort at level n is a term over level n+1. Only the annotations thatmatch a sort declaration are selected in case a declaration is ambiguous. Thefunction `srt' selects a term if it matches one of the terms in the set in its �rstargument.[9] Ws(�)[[� ]] = srt(fS(Sg(�0(�)))g)�(Wtv(up(�))[[� ]])[10] srt(�)(� ) = h>, f�gi when � m� � = >[11] srt(�)(� ) = h?, f�gi otherwiseA list of sort terms at level n is a list of terms over level n+ 1.[12] Wss(�)[[ts]] = Wts(up(�))[[ts]]Terms with Variables The function `Wt' de�ned below assigns types to aterm without considering the consistency of the types of variables. The function`Wtv' �rst assigns a type to a term using `Wt' and then applies `var-types'(x14.4.1) to make the types of di�erent occurrences of the same variable equal.[13] Wt(�)[[t]] = �, var-types(avars(�)) = �?Wtv(�)[[t]] = if fail?(�?) then � else +?(�?)�(�)Functions and Variables Functions get assigned the type from the declara-tion in the signature.[14] Wt(�)[[f]] = f : �f(�)The type assignment to variables is somewhat more complicated since unde-clared variables are taken into account according to the following rules. Equa-tion [15] deals with variables in types of the top signature. Equation [16] �ndsthe set of declared types � for a variable x. If � is not empty, i.e., the variableis declared, x is annotated with �. If there is no declaration (� is empty), a newtype variable is generated to assign to x, which is assigned a type as a term overthe next level. This is necessary to ensure that a term has the right number ofannotations.[15] up(�) = top-sigWt(�)[[x]] = fxg[16] up(�) 6= top-sig, �x(�) = �,if empty(�) then Wt(up(�))[[new-var(up(�))]] else � = ftsgWt(�)[[x]] = x : frn vars �( ts)[fxg]�(ts)gNil and Top Nil can not occur in well-formed speci�cations. Top can onlyoccur as a top-level type.[17] Wt(�)[[nil]] = fnil : nilg[18] Wt(�)[[top]] = ftop : topg290



Type Assignment / 14.4Auxiliary Functions For the type assignment of non-atomic terms we needthe following auxiliary functions.hiddenscontext-free syntaxsrt(TermSet) ! (Term) Bool� TermSet)app(MLS) ! (Term) Bool� TermSet)pr(MLS) ! (Term) Bool� TermSet)arr ! (Term) Bool� TermSet)prd ! (Term) Bool� TermSet)ann ! (Term) Bool� TermSet)eqn ! (Term) Bool� Eqs)new-arrow(MLS) ! TermequationsApplication An application term is assigned the codomain of the type of thefunction. To this end, both arguments are assigned types and the result termsare joined. The type of the term in the argument position should conform tothe argument type of the function.[19] Wt(�)[[t1 t2]] = app(�) �((Wt(�)[[t1]] ./ Wt(�)[[t2]])./ fa : new-arrow(�)g )[20] mgu(type(t1) � �1; type(t2) � � 2) = �app(�)((t1; t2); a : (�1; �2; � 3)) = h>, f�(t1 t2 : � 3)gi[21] app(�)((t1; t2); � ) = h?, ft1 t2 : nilgiotherwiseThe function `new-arrow' constructs an arrow type with new variables as domainand codomain, annotates it with types and yields a triple of the arrow type,domain and codomain.[22] new-var(up(�)) = x, x 0 = prime(x), �0 = x ! x 0,if zero(max(�)) then f� 0g else Wt(up(�))[[� 0]] = f� 1; t �gnew-arrow(�) = � 1; dom(term(� 1)); cod(term(� 1))Pair A pair (t1; t2) has the product type �1 � �2 if �i is the type of ti. Theproduct is itself a term over the next level.[23] Wt(�)[[t1; t2]] = pr(�)�(Wt(�)[[t1]] ./ Wt(�)[[t2]])[24] pr(�)(t1; t2) = h>, f(t1; t2) : type(t1) � type(t2)giwhen zero(max(�)) = >[25] pr(�)(t1; t2) = h>, t1; t2 : Wt(up(�))[[type(t1) � type(t2)]]iwhen zero(max(�)) = ? 291



14 / definition of multi-level specificationsArrow and Product Arrow and product are de�ned in terms of applicationof the functions (!) and (�) to their arguments. After type assignment thebinary notation is restored for readability.[26] Wt(�)[[t1 ! t2]] = arr�(Wt(�)[[(!) (t1; t2)]])[27] arr(t) = h>, ft1 ! t2 : type(t)giwhen bapp(t) = (!) (t1; t2)[28] arr(t) = h?, ftgi otherwise[29] Wt(�)[[t1 � t2]] = prd�(Wt(�)[[(�) (t1; t2)]])[30] prd(t) = h>, ft1 � t2 : type(t)giwhen bapp(t) = (�) (t1; t2)[31] prd(t) = h?, ftgi otherwiseAnnotation A term t : � that already has a type annotation � , has to beassigned a type that conforms with � and � itself should be assigned a type asa term at the next level of �.[32] Wt(�)[[t : � ]] = ann�(Wt(�)[[t]] ./ a : Wt(up(�))[[� ]])[33] ann(t : � 1; a : � 2) = h>, f�(t : �2)gi when mgu(� 1 � � 2) = �[34] ann(t; a : �) = h?, ft : �gi otherwiseLists of Terms[35] Wts(�)[[]] =[36] Wts(�)[[t]] = ts when ftsg = Wt(�)[[t]][37] Wts(�)[[t+1 ; t+2 ]] = Wts(�)[[t+1 ]] ++ Wts(�)[[t+2 ]]Equations An equation is annotated by annotating both sides of the equa-tion. The types of the resulting terms should be uni�able and if this is the casethe uni�er is applied to both term to make the types equal.[38] We(�)[[t1 � t2]] = eqn�(Wt(�)[[t1]] ./ Wt(�)[[t2]])[39] eqn(t1; t2) = h>, �2 � �1(t1 � t2)iwhen var-types(avars(t1; t2)) = �1,mgu(�1(type(t1) � type(t2))) = �2[40] eqn(t1; t2) = h?, t1 � t2i otherwise[41] We(�)[[]] =[42] We(�)[['+1 ; '+2 ]] = We(�)[['+1 ]] ++ We(�)[['+2 ]]Correctness The type assignment functions de�ned above produce a fully an-notated speci�cation given an arbitrary plain, partially annotated or fully an-notated speci�cation. Type assignment always succeeds, but the resulting spec-i�cation is not necessarily well-formed. The following propositions state thattype assignment produces a well-formed result whenever that is possible. The292



Type Assignment / 14.4expression �m� t0 expresses that t0 is an instantiation of one of the terms in �.Because we can choose t0 arbitrarily as long as it is well-formed the propositionstates that Wt �nds all most general annotations of t.Proposition 14.4.1 (Correctness of Wt) The function Wt �nds all correcttypings for a term if any exist. Let � be a multi-level speci�cation with free typessuch that m̀ls �. Given a term t, if there exists a full annotation t0 of t, i.e.,spine(t0) = spine(t), such that � t̀erm t0 and if � = Wt(�)[[t]], then � m� t0 andfor all t00 2 �, � t̀erm t00.Proof. by induction on t. 2If no functions are overloaded, terms have a single full annotation. The pre-vious proposition states that this single annotation is `principal', i.e., the mostgeneral type assignment of the term.Proposition 14.4.2 Let � be a fully annotated multi-level speci�cation withfree types such that m̀ls � and such that for each f , j�f (�)j � 1, then we havejWt(�)[[t]]j = 1.Similarly, we have that Wm �nds a well-formed full annotation for a speci�-cation if one exists.Proposition 14.4.3 (Correctness of Wm) If m̀ls � then m̀ls Wm[[spine(�)]].The result of type assignment is an expression over the original language towhich type assignment can again be applied.Proposition 14.4.4 Type assignment is idempotent, i.e.,[t02Wt(�)[[t]]Wt(�)[[t0]] = Wt(�)[[t]]:14.4.3 Disambiguation and ConuenceWe saw in x14.3.2 that well-formedness of a speci�cation ensures that derivableequality is type preserving. As a corollary, term rewriting with a well-formedspeci�cation is type preserving. Furthermore, the type assignment function formulti-level speci�cations yields a well-formed annotation of a speci�cation ifone exists. However, we have not yet looked at the consequences of overloadingresolution by type assignment for term rewriting. Is the plain term rewritesystem the same as the annotated rewrite system? Although this is the case forsome speci�cations, in general the answer to this question is no.Non-Conuence Caused by Overloading Due to overloading, the plain termrewrite system (TRS) of a speci�cation can be non-conuent while the annotatedTRS is conuent. A TRS is conuent if it does not matter which matchingequation is taken for a rewrite step. For example, the following module eqdade�nes equality on Boolean values and on lists in the style of the data algebra of293



14 / definition of multi-level specificationsBergstra and Sellink (1996). Module list access extends module list fromx13.1 with the function empty for testing emptiness of a list and the functionshd and tl, which give the head and tail of a list. The variables X and Y aregeneric variables.module eqdaimports bool, list_access;level 0signaturefunctionseq : A # A -> bool;equationseq(X, Y) == X <-> Y;eq(X, Y) == (empty(X) /\ empty(Y))\/ ((~(empty(X)) /\ ~(empty(Y)))/\ (eq(hd(X), hd(Y)) /\ eq(tl(X), tl(Y))));The plain term rewrite system of this module is not conuent because the twoeq equations have the same left-hand side but completely unrelated right-handsides. For instance, either equation can be used to rewrite the term eq(t,f).Only if the �rst equation is chosen the expected result is achieved. The TRS ofthe module becomes conuent if we consider its full annotation. The types ofvariables X and Y in the right-hand sides force the right types in the left-handsides. The annotation of eq in the �rst equation becomes bool # bool -> booland in the second equation list(A) # list(A) -> bool.The next example shows that even while the plain TRS is conuent it canhave di�erent normal forms than the annotated TRS. The function (/) is usedas constructor for positive rational numbers and as de�ned exclusive or functionfor the Booleans. When regarded as a plain TRS, rationals of the form X/Y arerewritten anyway.signaturefunctions(/) : nat # nat -> rat;(\/), (/\), (/) : bool # bool -> bool;equationsX / Y == (~X /\ Y) \/ (X /\ ~Y)These examples clearly show that, in general, types are needed to disam-biguate the equations of speci�cations. However, in many cases where matchingis used and constructors and de�ned functions do not have overlapping names,overloading is resolved by the choice of constructors in the left-hand side ofan equation. An example is the de�nition of the generalization of zip to tu-ples, for which it is not even clear how typed rewriting should be done, butuntyped rewriting does not go wrong. Although it is often clear by examinationwhether types can be discarded, it is not clear how this property can be tested.For rewriting purposes it seems to be su�cient to annotate only functions with294



Typechecking / 14.5their type, i.e., apply function `fspine' to the speci�cation which removes allannotations except those of functions. It is not clear whether all ambiguitiesdue to overloading are resolved in the fspine of a fully annotated speci�cation.Ambiguous Equations Due to overloading an untyped equation can actuallydenote several typed equations. An example is the equation size([]) == 0 inFigure 11.1 on page 221. As another example consider the overloaded numericaloperations in module num below. It is clear that the equations for addition thatinvolve 0 and s are valid for both naturals and integers. The type assignmentfunction `We' produces all annotations of an equation for which the types ofleft-hand side and right-hand side match.module numlevel 0signaturesorts nat; int;functions0 : nat; 0 : int;s : nat -> nat; s, p : int -> int;(+) : nat # nat -> nat; (+) : int # int -> int;i : nat -> int;variablesX, Y : nat; X, Y : int;equations0 + Y == Y; s(p(X)) == X; i(0) == 0;s(X) + Y == X + s(Y); p(s(X)) == X; i(s(X)) == s(i(X));p(X) + Y == X + p(Y);14.5 TypecheckingThe typecheck function for multi-level speci�cations is again constructed from awell-formedness predicate and a type assignment function. The main typecheckfunction checks a multi-level speci�cation. In addition there are two predicatesto check terms and equations over a multi-level signature.module MLS-TCimports MLS-TA14:4:2 MLS-NWF14:3:3exportscontext-free syntaxtc \[[" MLS \]]" ! EBooltc \(" MLS \)" \[[" Term \]]" ! EBooltc \(" MLS \)" \[[" Eqs \]]" ! EBoolequations[1] tc[[�]] = m̀ls Wm[[�]] 295



14 / definition of multi-level specifications[2] Wm[[�]] = � 0, Wt(� 0)[[t]] = ft 0; t �gtc(�)[[t]] = m̀ls � 0 ; � 0 t̀erm t 0[3] Wm[[�]] = � 0tc(�)[[E ]] = m̀ls � 0 ; � 0 èqs We(� 0)[[E ]]14.5.1 Typechecking Modular Speci�cationsFinally, we de�ne typechecking of a list of modules. The approach is rathercrude. First all modules are attened, then the MLS of each module is type-checked. This is of course rather expensive because code is duplicated. Observethat with this approach types and equations are disambiguated after being im-ported. This entails that newly introduced function declarations of existingfunctions may cause previously unambiguous equations to become ambiguous.module MMLS-TCimports MMLS14:2 MLS-TC14:5exportscontext-free syntaxtc \[[" Modules \]]" ! EBooltc1 \[[" Modules \]]" ! EBoolequations[1] tc[[M �]] = tc1[[at(M �)]][2] tc1[[]] = >[3] tc1[[module f �;]] = errors in module " f " :: tc[[�]][4] tc1[[M+1 M+2 ]] = tc1[[M+1 ]] ^ tc1[[M+2 ]]This concludes the speci�cation of the syntax, semantics and typechecking ofmodular multi-level speci�cations.14.6 Discussion and Concluding Remarks14.6.1 Related WorkIn x11.1 we discussed several formalisms related to the formalism MLS describedin this chapter. Here we give some pointers to other related issues.Type Surveys Cardelli and Wegner (1985) give an informal introduction totypes in programming languages including polymorphism, existential types andsubtypes. Cardelli (1993) discusses a wide variety of programming features andtheir types, including mutable types, exception types, tuple types, option types,recursive types and subtypes. Mosses (1993) surveys the usage of sorts in �rst-order algebraic speci�cation frameworks, discussing order-sorted algebra and296



Discussion and Concluding Remarks / 14.6partial functions. Mitchell (1990) gives a survey of type systems for program-ming languages. Cardelli (1997) provides a more informal introduction to typesystems.Typechecking in ASF+SDF The speci�cation formalism ASF+SDF has beenapplied to the description or design of several languages. We give some point-ers to papers that describe speci�cations of type systems similar to the onedescribed in this chapter. Hendriks (1989) describes (in the �rst ASF+SDFspeci�cation) the polymorphic type inference algorithm of Milner (1978) in thelanguage Mini-ML. Van Deursen (1996) describes the speci�cation of a type-checker for Pascal. Hillebrand and Korver (1995) give a speci�cation of thewell-formedness of �CRL speci�cations. �CRL is a process speci�cation formal-ism with a monomorphic algebraic speci�cation language for the speci�cationof data in processes. Vigna (1995, 1996) speci�es a typechecker and compilerfor the categorical programming language IMP(G). A special feature of thelanguage is the associativity of the built-in type constructors � and +. Thetypechecker makes extensive use of list matching in ASF+SDF to handle thisassociativity. In full MLS, associativity of type constructors can be expressedby means of equations over types like A�(B�C) = (A�B)�C. Type checkingsuch speci�cations requires E-uni�cation.Polymorphic Typechecking The type inference algorithm of Milner (1978),also described in Damas and Milner (1982), forms the core of all typecheckersfor polymorphic languages. The basic idea of that algorithm is also used in thetype assignment of terms in multi-level speci�cations. Although Milner (1978)mentions overloading as a possible orthogonal extension of his type inferencealgorithm, such an extension is not described in the literature. Ambiguitiesdue to overloading in pure Hindley/Milner systems are di�cult to resolve if norestriction on the type(s) of functions is given by means of a signature, becausethen each occurrence of a function can have a di�erent type. The overloadingthat is achieved by means of type classes (Wadler and Blott, 1989), or moregenerally, quali�ed types (Jones, 1992), is actually not overloading in the senseused in this chapter. Rather, type classes provide the means to restrict the set oftypes over which the universal quanti�er in the type of a polymorphic functionranges and they give an account of `non-parametric' function de�nitions of suchrestricted polymorphic functions.Types in Algebraic Speci�cation The basic type system of monomorphicmany-sorted algebraic speci�cation is explained in any introduction to algebraicspeci�cation or universal algebra, see for instance Wechler (1992). Mosses (1993)surveys the many variations and extensions of monomorphic type systems foralgebraic speci�cation. Extensions of many sorted algebraic speci�cation wherethe space of types is de�ned by means of an algebraic speci�cation have beenstudied by various authors (Poign�e, 1986, M�oller, 1987, Meinke, 1992a). Meinke(1992b) develops a theory for universal algebra in higher types. Meinke (1993)gives the operational semantics of ATLAS via term rewriting and proves itsequivalence to the denotational semantics (i.e., initial model). 297



14 / definition of multi-level specifications14.6.2 ExtensionsThe formalism MLS presented in this chapter is a uniform and simple speci�ca-tion formalism for sophisticated abstract data type speci�cation. Some aspectsimportant for speci�cation and execution of speci�cations have not yet beenattended. We discuss several extensions to the formalism and the issues theyraise for further research.Implicit Functions ATLAS provides implicit functions, which entails thatfunctions declared as fimplicitg do not have to be written explicitly in terms(Hearn and Meinke, 1994, Hearn, 1995). This is used, for instance, to hide theexplicitly de�ned application function for user-de�ned function types. Whenused for unary functions, this boils down to chain rules of grammars. Forexample, by introducing an operator inc asinc : nat -> int {implicit}the naturals are embedded in the integers. The equations0 + X == X;s(X) + Y == s(X + Y)then apply both to naturals and integers. This feature gives rise to in�niteambiguities. Consider the declarationinc : A -> list(A) {implicit};(++) : list(A) # list(A) -> list(A) {implicit}Given these declarations we can write lists such as inc(X) ++ inc(Y) ++ inc(Z)as X Y Z. The problem is that the inclusion operator inc is applicable to anyterm, i.e., we can interpret X as inc(X), as inc(inc(X)), etc. It is clear thatthis in�nite ambiguity is recurrent and could somehow be represented in a �nitemanner. How this should be achieved is not clear.In ATLAS only unary and binary functions can be declared as implicit.Implicit constants, which are not allowed in ATLAS, are analogous to emptyproductions in context-free grammars and make the typechecking problem un-decidable. For instance, if we declareempty : list(A) {implicit}then the list X can be interpreted as inc(X), as empty ++ inc(X), as empty++ inc(X) ++ empty, etc. The implicit constant can be inserted anywhere andarbitrarily many times in the term.Grammars as Signatures A generalization of the implicit types of ATLASand the in�x functions of MLS is the use of arbitrary mix�x function declara-tions. The motivation for the development of MLS is to prepare the extension ofthe syntax de�nition formalism SDF of Heering et al. (1989). In SDF, context-free grammars are used as monomorphic algebraic signatures, providing exiblenotation for functions and constructors. Like normal monomorphic algebraicsignatures, SDF does not support polymorphism nor higher-order functions.298



Discussion and Concluding Remarks / 14.6The �rst step towards an extended SDF is made in Part II, where the designof Heering et al. (1989) is rationalized by orthogonally de�ning its features suchthat the formalism can be seen as an instance of a family of formalisms. Asyntax de�nition formalism can be created by choosing a set of features. Manyfeatures are expressed as conservative extensions of pure context-free grammarsby normalizing extended grammars to context-free grammars. As part of thisapproach, the disambiguation of ambiguous context-free grammars by meansof priorities is seen as an instance of a more general view of disambiguationby means of disambiguation �lters | functions that select a subset of a set ofpossible parse trees | see Chapter 4.In the de�nition of MLS we have abstracted from the use of grammars assignatures in order to get a clear picture of a multi-level type system withoutthe complications caused by grammars. It is clearly desirable to extend MLSwith arbitrary mix-�x operators and disambiguation capabilities like prioritiesto enhance the notation de�ned in signatures. However, the generalization ofmulti-level speci�cations to multi-level grammars is not straightforward if ar-bitrary grammars are allowed. The addition of chain and empty productionsto signatures makes the parsing problem undecidable in general. Such rulesare the cause of in�nite ambiguities (sentences can have in�nitely many parses)already in context-free grammars. However, in multi-level grammars the set ofall parses for a sentence might not be �nitely representable. Due to overloading,terms in MLS can have more than one full annotation (the analogon of a parsetree), but always �nitely many.In Chapter 15 the extension of context-free grammars to two-level gram-mars and the correspondence of two-level grammars with two-level �rst-ordersignatures are studied for the purpose of polymorphic syntax de�nition | poly-morphic notation for algebraic speci�cation. There a restriction on multi-levelgrammars is formulated that guarantees that parsing is decidable.Type Equations Type equations are not interpreted by the type assignmentalgorithm presented in this chapter. This is a pity, because many type featuresfrom programming languages and abstract data types can be expressed in MLSby means of type equations. In x13.6.2 the generalization of the zip functionto tuples of lists is de�ned by means of functions at the level of types (the mapfunction (*)). In x13.6.6 type classes are expressed as type predicates. In thesame way the more general quali�ed types of Jones (1992) can be expressed.There are many other applications of type equations. Type de�nitions of theform parser(A, B) == list(A) -> (B # list(A))can be used to de�ne a type in terms of other types. The original constructorcan be eliminated. Recursive type de�nitions of the formlist(A) == empty + (A # list(A))can be used to de�ne recursive types. These type constructors can not beeliminated, because the unfolding of the type results in an in�nite term. The299



14 / definition of multi-level specificationsassociative type constructors of Vigna (1995, 1996) can be expressed by theequations A # (B # C) == (A # B) # C;A + (B + C) == (A + B) + CJones (1992) also discusses record types as a special case of quali�ed types byproviding operations for looking up the type of a �eld in, and for removing a�eld from a record type.Simple type de�nitions can be accounted for by rewriting. For the other casesof type equations E-uni�cation is required. E-uni�cation is undecidable in gen-eral [see Jouannaud and Kirchner (1991) for a survey of uni�cation]. However, ifthe equations are known to belong to a certain class, a solution strategy based onthat knowledge might be found. For instance, a simple approach to E-uni�cationled to a uni�cation algorithm that terminates for the uni�cation of the types inthe generalization of the zip function in x13.6.2 (see Visser (1996b)). All theother examples of type equations mentioned above are embedded in the type-checking of various programming languages. These typecheckers thus use somekind of E-uni�cation optimized for the special case. For instance, Nipkow andPrehofer (1995) describe a typechecking algorithm for type classes in terms ofuni�cation with constraint resolution. If a union of these solutions exists suchthat many cases of type equations can be dealt with more generically, MLSprovides an expressive framework for speci�cation of advanced type systems.Modules The formalism has a rudimentary modularization scheme based onsyntactic inclusion, i.e., imports are expanded before typechecking. Is it possibleto keep the module structure while typechecking? Furthermore, consider usingarbitrary terms as module names. An import of a module name provides a termthat is at least as speci�c as a module name. The parameters of the module aredetermined by matching the actual module name against the declared modulename. Function renaming operators applicable to imports would be anotheruseful extension.Rewriting A �rst experiment has been conducted with translating the level 0equations of a multi-level speci�cation to the �rst-order rewrite rule languageof the Epic term rewrite compiler of Walters and Kamperman (1996). Termsare translated to �rst-order terms by keeping the same term structure as in thespeci�cation, i.e., terms are built by application, pairing, product, arrow andannotation from functions and variables. Research issues here include: Whenare annotations necessary? The translation is correct for the subset of MLS thatuses only free type constructors in declarations. If type equations are allowed,rewriting with type annotations is complicated because matching has to considertype equations. Can this be expressed in the rewrite system itself?14.6.3 ConclusionsIn this chapter we have de�ned the syntax, semantics and type system of themodular, applicative, multi-level equational speci�cation formalism MLS. Each300



Discussion and Concluding Remarks / 14.6level of an MLS speci�cation is an applicative equational speci�cation that usesterms over the next level as types. This is a generalization of type systemswith two and three levels that have separate de�nitions for each level. The typesystem of MLS is orthogonal and uniform (typechecking is the same for eachlevel) and combines parametric polymorphism with overloading. These featuresform a formalism for the de�nition of advanced generic data types.The formalism is completely speci�ed in ASF+SDF. The Meta-Environmentmade it possible to interactively experiment with design choices and develop theformalism and its prototype implementation in a short period of time (about fourmonths). The typesetting and literate programming facilities provided by theMeta-Environment played an important role in the design process. This chapterdemonstrates a number of speci�cation techniques applicable in other speci�-cations, including innermost term rewriting, the separation of well-formednessrules and non-wellformedness rules producing descriptive error messages, typeassignment by annotation, module import normalization, and a library of func-tions on terms, such as sets, substitution, uni�cation and matching.One of the shortcomings of ASF+SDF is the poor reusability of speci�cations,due to a lack of abstraction features such as polymorphism and parameterizedmodules. If ASF+SDF would be equipped with the higher-order functions andpolymorphism of MLS, speci�cations could reuse more standard data typesdirectly. On the other hand, MLS does not provide the syntax de�nition supportof SDF. A formalism that combines the notational facilities of SDF with thetyping facilities of MLS into Multi-Level ASF+SDF, will be a powerful tool fordesigning and prototyping languages.
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Part IVPolymorphic Syntax De�nition
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15Polymorphic Syntax De�nitionContext-free grammars are used in several algebraic speci�cation formalismsinstead of �rst-order signatures for the de�nition of the structure of algebras,because grammars provide better notation than signatures. The rigidity ofthese �rst-order structures enforces a choice between strongly typed structureswith little genericity or generic operations over untyped structures. In two-level signatures level 1 de�nes the algebra of types used at level 0 providingthe possibility to de�ne polymorphic abstract data types. Two-level grammarsare the grammatical counterpart of two-level signatures. This chapter discussesthe correspondence between context-free grammars and �rst-order signatures,the extension of this correspondence to two-level grammars and signatures, ex-amples of the usage of two-level grammars for polymorphic syntax de�nition,a restriction of the class of two-level grammars for which the parsing problemis decidable, a parsing algorithm that yields a minimal and �nite set of mostgeneral parse trees for this class of grammars, and a proof of its correctness.15.1 IntroductionIn the algebraic approach to programming language speci�cation, languages areconsidered as algebras. A sentence, program or expression in a language is anobject of its algebra. The constructs for composition of expressions from smallerexpressions and the operations that interpret, translate, transform or analyzeexpressions are the operations of the algebra. Algebraic speci�cations describealgebras by means of a �nite structure that describes the sorts of the algebra,its operations and the relations between the operations. Any algebra that hasthe structure prescribed by the speci�cation and that satis�es its relations is amodel of the speci�cation. Therefore, a speci�cation always describes a class ofalgebras instead of precisely the intended algebra. There are many formalismsfor algebraic speci�cation. Depending on the expressive power of a formalismthe class of algebras described by a speci�cation can be narrowed down to theintended algebra. First-order algebraic speci�cations consist of a �rst-ordersignature and a set of equations over the terms generated by the signature.A �rst-order signature consists of a �nite set of sorts and a �nite number ofoperations over those sorts. 305



15 / polymorphic syntax definitionGrammars describe languages by means of a �nite structure that describes thesyntactic categories of a language and the sentences of its categories. Context-free grammars and �rst-order signatures generate the same class of algebras.Parse trees or abstract syntax trees can be considered as terms over a signatureand the language of terms over a signature can be described by a context-freegrammar (Hatcher and Rus, 1976, Goguen et al., 1977). This correspondenceis exploited in several algebraic speci�cation formalisms by allowing the use ofsignatures with mix-�x operators (Futatsugi et al., 1985, Bidoit et al., 1989)or even arbitrary context-free grammars (Heering et al., 1989) instead of justpre�x function signatures. This provides concrete notation for functions andconstructors in data type speci�cations and it enables de�nition of operationson programming languages directly in their syntactic constructs.The rigidity of �rst-order signatures and context-free grammars makes it dif-�cult to generically describe properties of an algebra. For example, an algebrawith lists of integers and lists of strings can be speci�ed with a �rst-order sig-nature by declaring a sort LI (list of integers) and a sort LS (list of strings) andby de�ning operations like the empty list, cons, head, tail and concatenation onboth sorts. However, if these list sorts have the same properties independentof the contents of the lists for some operations, this can not be expressed in a�rst-order speci�cation. Similarly, if for both list sorts an operation exists thatapplies a function to each element of a list, this can not be expressed in a genericway in a �rst-order speci�cation. This lack of genericity makes it di�cult todevelop libraries with speci�cations of common data types and generic languageconstructs.A higher type algebra (Meinke, 1992b) is an algebra with an algebraic struc-ture imposed on the set of sorts, i.e., the set of sorts is itself an algebra withoperations. These sort operators are interpreted as functions from collections ofcarrier sets to collections of carrier sets. For instance, the sorts LI and LS abovecan be seen as sorts constructed from the sorts I (integer) and S (string) by thesort operator L that constructs the sort of sequences of integers and strings, re-spectively. In such algebras more generic statements about (classes of) objectsand operations of the algebra can be made. For example, one can say that, foran arbitrary sort x, the tail function is a function from Lx to Lx that yieldsthe argument sequence without its �rst element, where we abstract from thefact that x is equal to I or S. One could say that higher type algebras providea higher resolution in the sort space of an algebra. Algebraic speci�cations inhigher types (Poign�e, 1986, M�oller, 1987, Meinke, 1992a, Hearn and Meinke,1994, Visser, 1996a) describe higher type algebras by means of two (or more)levels of signatures. Each level speci�es the sort operations for the next level,i.e., the terms over the signature at level i + 1 are the sort expressions of thesignature at level i. Sort expressions with variables are polymorphic sorts thatdescribe all sorts obtained by substituting sorts for the variables. Polymorphicsorts are used to specify polymorphic functions that uniformly apply to manysorts.In this chapter we discuss polymorphic syntax de�nition by means of context-free and two-level grammars. We argue that the grammatical counterpart of306



Signatures and Grammars / 15.2algebraic speci�cations with two-levels are two-level grammars. This correspon-dence can be extended to multi-level signatures leading to multi-level grammars.The connections between the various formalisms are summarized by the follow-ing diagram:First-OrderSignature (3) Two-LevelSignature (4) Multi-LevelSignature(2)Context-FreeGrammar (1) Two-LevelGrammar Multi-LevelGrammarwhere we refer to the following literature: (1) van Wijngaarden et al. (1976),Pereira and Warren (1980) (2) Hatcher and Rus (1976), Goguen et al. (1977),Futatsugi et al. (1985), Heering et al. (1989) (3) Poign�e (1986), Meinke (1992b,1992a), Hearn and Meinke (1994) (4) Hearn (1995), Visser (1996a).The rest of this chapter is structured as follows. x15.2 contains a review of�rst-order signatures, context-free grammars and their correspondence and givessome examples of data type speci�cation with context-free grammars. x15.3de�nes two-level grammars and the parsing problem for two-level grammars.x15.4 illustrates how two-level grammars can be used for polymorphic syntaxde�nition. x15.5 discusses several properties of two-level grammars includinga characterization of a large class of grammars for which the parsing problemis decidable, although membership of the class is undecidable. x15.6 de�nes aparsing algorithm, with a correctness proof, for this class of two-level grammarsthat yields for each string a minimal and �nite representation of the set of allparse trees for the string. x15.7 discusses related grammar formalisms and typesystems and x15.8 concludes the chapter.15.2 Signatures and GrammarsIn this section we review many-sorted algebras, context-free grammars, the cor-respondence between �rst-order signatures and context-free grammars and theuse of context-free grammars in the algebraic speci�cation of languages and datatypes.15.2.1 Many-Sorted AlgebraMany-sorted algebras or �-algebras were introduced by Higgins (1963) as a gen-eralization of the theory of abstract algebra. Here we give the basic constructsneeded in this paper. For a further introduction to the theory of universal alge-bra see for instance Meinke and Tucker (1992), who also give several exampleapplications. A note on notation: We will frequently use the notion of a family,307



15 / polymorphic syntax definitionwhich is a collection of sets indexed by some, �nite or in�nite, index set. If Fis a family indexed by I , we denote by F (i) the set at index i 2 I and writeF = (F (i) j i 2 I). If we want to indicate that x is an element of some F (i), weloosely write x 2 F identifying F with Si2I F (i).De�nition 15.2.1 (Signature) A many-sorted signature � is a pair hS; F iwhere S = S(�) � S is a set of sort names and F = F(�) � O � S(�)+ a setof function declarations (with S and O some sets of sort names and operationnames, respectively). We write f : �1 � � � � � �n ! �0 if hf; �1 : : : �n�0i 2 F(�).� [ V is the extension of a signature � with a S(�)-indexed family of sets ofvariables V. We write x : � if x 2 V(�). The class of all signatures is denotedby SIG.De�nition 15.2.2 (�-Algebra) A �-algebra A is an S(�)-indexed family ofcarrier sets A(�) and an assignment of each f : �1�� � � � �n ! �0 in F(�) to anA function fA : A(�1)� � � � � A(�n)! A(�0) such that fA(a1; : : : ; an) 2 A(�0)if ai 2 A(�i) (1 � i � n). Alg(�) denotes the collection of all �-algebras.An equational many-sorted algebraic speci�cation consists of a signature anda set of equations that de�ne the relations between objects of the algebrasdescribed by the speci�cation. Note that the theory of universal algebra doesnot limit algebras to have �nitely many operations or sorts, but that an algebraicspeci�cation must be a �nite structure. The following example illustrates thede�nitions above. We use the keywords sorts, functions and variables toindicate the declaration of S(�), F(�) and V, respectively. We write # for �and -> for!. Furthermore, we make use of modular speci�cations consisting ofmodules that can import other modules, where a module with imports denotesthe pointwise union of the imported and importing speci�cation.Example 15.2.3 The following is an example of a �rst-order algebraic speci�-cation of the algebra of natural numbers.module naturalssorts nat;functionszero : nat;succ : nat -> nat;add : nat # nat -> nat;variablesI, J : nat;equationsadd(zero, I) = I;add(succ(I), J) = succ(add(I, J))De�nition 15.2.4 (Terms) The S(�)-indexed family Tree(�) of well-formedterms (or trees) over signature � is de�ned by the inference rules below such308



Signatures and Grammars / 15.2that t 2 Tree(�)(�) i� � ` t : � . x 2 V(�)� [ V ` x : � (Var1)f : �1 � : : :� �n ! � 2 F(�); � ` ti : �i (1 � i � n)� ` f(t1; : : : ; tn) : � (App1)De�nition 15.2.5 (Homomorphism) A �-homomorphism h : A ! B is anS(�)-indexed family of functions h� such that for any f : �1 � : : : � �n ! � 2F(�), h� (fA(a1; : : : ; an)) = fB(h�1(a�1); : : : ; h�n(an)). A �-algebra A is initialin Alg(�) if for any B 2 Alg(�) there is a unique homomorphism from A to B.Because there is a unique homomorphism hA : Tree(�) ! A for any A 2Alg(�), i.e., hA(f(t1; : : : ; tn)) = fA(hA(t1); : : : ; hA(tn)), we haveProposition 15.2.6 Tree(�) is an inital algebra in Alg(�).De�nition 15.2.7 (Substitution) A substitution � : V ! Tree(� [ V) is aS(�)-indexed function mapping variables to terms. The function �� : Tree(� [V)! Tree(�[V) is the homomorphic extension of a substitution � that replacesall variables in a term by their � images. A term t is an instance of term t0 ort0 is more general than t, written as t0 m� t, if there is some substitution � suchthat t = ��(t0). A term t is strictly more general than t0, tm t0, if tm� t0 and nott0 m� t. In case t0 m� t we also say that t matches t0 and that � is the match. Asubstitution � is a uni�er for two terms t and t0 if ��(t) = ��(t0). A uni�er � is amost general uni�er for t and t0 if for each uni�er �0 we have that ��(t)m� ��0(t).A substitution � is a renaming of t if ��(t)m� t, i.e., if range(�jvars(t)) � V, withvars(t) the set of variables in t. Two terms t and t0 are equal up to renamingof variables (t := t0) if there is a renaming � such that �(t) = t0.The S(�)-indexed family of equations of an algebraic speci�cation with sig-nature � is a subfamily of the family Eq(� [ V) such that Eq(� [ V)(�) �Tree(� [ V)(�)2. A �-algebra A satis�es an equation t1 = t2, if for any sub-stitution �, h � ��(t1) = h � ��(t2) in A, where h is the unique homomorphismh : Tree(�)! A.15.2.2 Context-Free GrammarsContext-free grammars can be used to de�ne languages, i.e., sets of strings andanalyses of strings in the form of parse trees. The structure of parse treescorresponds to the structure of terms over a signature as we shall see in thenext subsection. However, grammars provide more exible notation for terms.De�nition 15.2.8 (Grammar) A context-free grammar G is a triple hS;L; P iwith S = Ss(G) a �nite set of sort symbols or nonterminals, L = Sl(G) a �niteset of literals or terminals, with Ss(G)\ Sl(G) = ; and S(G) = Ss(G)[ Sl(G) the309



15 / polymorphic syntax definitionset of symbols of G, and P = P(G) � S(G)� � Ss(G) a �nite set of productions.We write � ! � for a production h�; �i 2 P(G). G [ V is the extension ofa grammar with variables. We write x ! � if x 2 V(�). The class of allcontext-free grammars is denoted by CFG.Observe that productions are reversed in order to make them look like functiondeclarations in a signature|conventionally a production � ! � is written as� ! � or � ::= �. Also note that in the conventional de�nition of context-freegrammars a single symbol has the role of start symbol from which all sentencesof the grammar are generated. In the de�nition above all sort symbols arestart symbols. Rus and Jones (1995) make a distinction between context-freegrammars that have a single start symbol or axiom, algebraic grammars thathave all nonterminals as start symbol, and multi-axiom grammars with a subsetof the nonterminals as start symbol. In that terminology our grammars mightmore appropriately be called algebraic grammars. However, in our de�nition oflanguage generated by a grammar (below), we distinguish the sets generated byeach nonterminal, whereas in the de�nition of Rus and Jones (1995) the languageof a grammar is the union of all strings generated by all axioms, weakening theexpressive power of the formalism. With Goguen et al. (1977) we stick with thefamiliar `context-free grammar'.As concrete syntax for grammars in examples we adopt the style of the syntaxde�nition formalism SDF (Heering et al., 1989). The keywords sorts, syntaxand variables indicate the sets of sort symbols, context-free productions andvariables declarations, respectively. Strings of characters between double quotesrepresent the literals of the grammar and identi�ers are used as sort symbols.The sort symbols are explicitly declared in the sorts section, whereas literalsare implicitly declared by their usage in productions. Grammars can be dividedin modules and modules can import other modules. A module with importsdenotes the pointwise union of the imported and importing grammar.Example 15.2.9 The following speci�cation uses a context-free grammar assignature in the speci�cation of succesor naturals. This speci�cation is similarto the speci�cation in Example 15.2.3, but in the equations we can use the morenatural in�x notation familiar from mathematics.module naturals-cfgsorts nat;syntax"0" -> nat;"s" nat -> nat;nat "+" nat -> nat {left};"(" nat ")" -> nat {bracket};variables"I" -> nat; "J" -> nat;equations0 + I = I;s(I) + J = s(I + J)310



Signatures and Grammars / 15.2The attributes attached to the productions are meant for disambiguation. Theattribute left indicate the left associativity of the addition function and theattribute bracket indicates that parentheses around a natural number behaveas the identity function. Disambiguation will be further discussed below.De�nition 15.2.10 (Parse Trees) The S(G)-indexed family Tree(G) of parsetrees over grammar G is de�ned by the inference rules below such that t 2Tree(G)(�) i� G ` t : � . L 2 Sl(G)G ` L : L (Lit2)x 2 V(�)G [V ` var(x; �) : � (Var2)�1 : : : �n ! � 2 P(G); G ` ti : �i (1 � i � n)G ` app(�1 : : : �n ! �; [t1; : : : ; tn]) : � (App2)Example 15.2.11 As an example of this inference relation consider the follow-ing parse tree for the sentence 0 + I over the grammar of Example 15.2.9.app(nat "+" nat ! nat; [app("0" ! nat; ["0"]);"+"; [var("I"; nat)]])Rule (App2) de�nes the construction of application tree nodes for productionsof a grammar. Observe that the complete production is used as label in suchapplication nodes.Because the structure of parse trees is di�erent from terms over a signature,we rede�ne the notion of substitution.De�nition 15.2.12 (Substitution) A substitution � : (V�S(G))! Tree(G[V) is a S(G)-indexed family of functions mapping variables to trees. The exten-sion �� of � to trees is de�ned as ��(L) = L��(�)(var(x; �)) = �(var(x; �))��(�)(app(�1 : : : �n ! �; [t1; : : : ; tn])) =app(�1 : : : �n ! �;[��(�1)(t1); : : : ; ��(�n)(tn)])All other notions de�ned in De�nition 15.2.7 are de�ned in the same way forparse trees.De�nition 15.2.13 (Language) The language L(G) generated by a context-free grammar G is the S(G)-indexed family of strings such that L(G)(�) =yield(Tree(G)(�)), where the function yield : Tree(G [ V) ! (S(G) [ V)� isde�ned by yield(L) = Lyield(var(x; �)) = xyield(app(�1 : : : �n ! �; [t1; : : : ; tn])) = yield(t1) : : : yield(tn) 311



15 / polymorphic syntax definitionand applied to a set of trees denotes the pointwise extension to sets.De�nition 15.2.14 (Parsing) A parser for a context-free grammar G is afunction �(G) : S(G)� ! P(Tree(G)) that maps a string of symbols to a sub-family of Tree(G) such that�(G)(w)(�) = ft 2 Tree(G)(�) j yield(t) = wgA recognizer is a predicate 2 L(G) that decides whether a string is in the lan-guage generated by G or more speci�cally a predicate 2 L(G)(�) that decideswhether a string is in the language generated by sort symbol � .15.2.3 Correspondence of Signatures and GrammarsThere is a correspondence between the trees generated by �rst-order signaturesand context-free grammars such that grammars can be used to describe thestructure of algebras (Hatcher and Rus, 1976, Goguen et al., 1977, Heeringet al., 1989).Proposition 15.2.15 There are mappings grm : SIG! CFG and sig : CFG!SIG such that Tree(grm(�)) �= Tree(�) and Tree(sig(G)) �= Tree(G).Proof. De�ne grm such that for a signature � a grammar is constructed thatexpresses the syntax of terms over a signature � by taking as nonterminals thesorts of � and as literals the operator symbols of �, parentheses and commas.Ss(grm(�)) = S(�)Sl(grm(�)) = f"f" j f : �1 � � � � � �n ! �0 2 F(�)g [ f"("; ")"; ","gP(grm(�)) = f"f""("�1"," : : :","�n")"! �0j f : �1 � � � � � �n ! �0 2 F(�)gNow we can translate terms over � to parse trees over grm(�) by means of thefunction igrm : Tree(�)! Tree(grm(�)) as follows:igrm(�)(f(t1; : : : ; tn)) = app("f""("�1"," : : : ","�n")"! �0;["f""("igrm(�1)(t1)"," : : : ","igrm(�n)(tn)")"])for each f : �1 � � � � � �n ! � 2 P(�). De�ne sig such that a grammar istranslated to a signature in which the productions of the grammar have the roleof function names.S(sig(G)) = S(G)F(sig(G)) = f"�! �" : �1 � � � � � �n ! � j �! � 2 P(G); � = �1 : : : �ng[ f"L" :! L j L 2 Sl(G)gNow we can translate parse trees to terms by means of the function isig :Tree(G)! Tree(sig(G)) as follows:312



Signatures and Grammars / 15.2isig(L)(L) = L()isig(�)(var(x; �)) = xisig(�)(app(�1 : : : �n ! �; [t1; : : : ; tn])) ="�1 : : : �n ! �"(isig(�1)(t1); : : : ; isig(�n)(tn))It is clear that igrm and isig are isomorphisms.1 2The following proposition tells us that we can use context-free grammars asmany-sorted algebraic signatures, where productions play the role both of func-tion symbol and type declaration. We can thus speak of the class of algebrasAlg(G) generated by a context-free grammar G, where the grammar symbols areinterpreted as carrier sets and productions as algebraic operations. It is clearthat the family Tree(G) of parse trees over G is an initial algebra in Alg(G). Thelanguage L(G) is also an element of Alg(G), with yield as the unique homomor-phism from Tree(G)! L(G). However, L(G) is not necessarily initial in Alg(G).A context-free grammar is ambiguous if there is some string w 2 L(G) for whichmore than one parse tree exists.Proposition 15.2.16 L(G) is initial in Alg(G) i� G is unambiguous.For if G is ambiguous, yield is not injective, hence not an isomorphism. Thisentails that algebraic properties do not apply to the strings used to denotetrees. For example, in a grammar of arithmetic expressions with the productione "�" e ! e, the composition of the strings x, � and y � z does not corre-spond with the composition of their trees, i.e., x� (y� z), but with (x� y)� z,which usually has a di�erent semantic interpretation. We could require the useof unambiguous grammars. However, it is undecidable whether a context-freegrammar is ambiguous. There are decidable subclasses of CFG, e.g., the LR(k)grammars, that are unambiguous, but these classes are much more restrictivethan the class of unambiguous grammars and, moreover, not closed under unionof grammars, which is a handicap when developing modular speci�cations. Fur-thermore, to disambiguate a grammar it is often necessary to introduce newsort symbols and to restrict the possibility to compose expressions.In Chapter 4 a method for disambiguation of context-free grammars by meansof disambiguation �lters is proposed. A �lter F(G) selects a subset from theparse trees for a string, i.e., F(G)(�(G)(w)) � �(G)(w). A �lter is completelydisambiguating if for each string w, jF(G)(�(G)(w))j � 1.Proposition 15.2.17 If a �lter F(G) is completely disambiguating, then F(G)��(G) is an injection L(G)! Tree(G).However, the trees that are not selected by the �lter become unreachable withthis method, i.e., F(G) ��(G) is not surjective. A solution to this problem is totry to add bracket productions, which are interpreted as identity functions, tothe grammar such that all trees become reachable.1Note that grm and sig are not isomorphisms from SIG to CFG and vice versa: � 6=sig(grm(�)) and G 6= grm(sig(G)). 313



15 / polymorphic syntax definitionProposition 15.2.18 If Tree(G) �= Tree(G [ Gbr)= =br and F(G [ Gbr) is com-pletely disambiguating, then L(G) �= Tree(�).For a further discussion of this topic we refer to Chapter 4. In the sequel wewill assume that we are dealing with such grammars that we can use stringsto denote trees. In examples we use a simple method for disambiguation bypriority and associativity declarations. For instance, in the grammar of naturalsabove we used the production attribute left to declare the addition operatoras left associative. Furthermore, the bracket attribute declares the production"(" nat ")" -> nat fbracketg as the identity function on natural numbersand makes all trees in Tree(nat) reachable by means of strings.15.2.4 Data Type Speci�cationBy means of grammars as signatures we have a exible framework for syntax def-inition in the algebraic speci�cation of data types, for example, the typical stackconstructors might be de�ned as "[]" -> stack; "push" int "on" stack-> stack . In algebraic speci�cation of programming languages, context-freegrammars can be used for instance to specify the syntax of a programminglanguage as in var ":=" exp -> stat and the syntax of operations on pro-grams such as typecheckers decl "|-" exp -> bool; decl "|-" stat ->bool that characterize the well-typed expressions and statements, interpreters"eval" "[[" stat "]]" "(" env ")" -> env that interpret statements asfunctions from environments to environments and compilers "trans" "[["stat "]]" -> smc that translate statements to stack machine code.The disadvantage of �rst-order signatures and context-free grammars is therigid monomorphic typing scheme. For instance, we can not express that foreach sort � , the sort �� of sequences of �s can be constructed and that foreach function f : �1 ! �2 2 F(�) the function f� : ��1 ! ��2 extends f tosequences such that f�(a1 : : : an) = f(a1) : : : f(an). The consequence is that foreach special case of a generic construct such as sequences and for each instanceof a generic function such as �, a separate de�nition has to be given.One solution to overcome this rigidity is to loosen the typing requirements. InVisser (1993) terms of typed combinatory logic are encoded as simple untypedapplicative terms. In Van den Brand et al. (1997a) a similar structure is de�nedfor the representation of parse trees and other structured data by means of ageneric format for term representation. We study a combination of the ideasfrom those papers. The following grammar of generic terms (aterms) is de�nedby Van den Brand et al. (1997a) to represent parse trees and abstract syntaxtrees over arbitrary grammars. A term is a function symbol (afun), an applica-tion of a function symbol to a list of arguments F (T2; : : : ; Tn), or a list of terms[T1; : : : ; Tn]. A function symbol is a literal or an identi�er. Identi�er functionsymbols have to de�ned explicitly. The module literals that is imported inmodule aterms de�nes the syntax of literals, i.e., strings of characters betweendouble quotes.314



Signatures and Grammars / 15.2module atermsimports literalssorts aterms atermlist afun atermsyntaxaterm -> aterms;aterm "," aterms -> aterms;"[" "]" -> atermlist;"[" aterms "]" -> atermlist;literal -> afun;afun -> aterm;afun "(" aterms ")" -> aterm;atermlist -> aterm;variables"T" -> aterm; "Ts" -> aterms; "Tl" -> aterms;With this term structure it is possible to de�ne higher-order functions. Forinstance, the following module de�nes the function * that applies a function Fto each element of a list of terms and the function : that adds an element to thefront of a list. Functions that are passed as arguments to higher-order functionsare also represented as terms. The function @ de�nes the application of suchsymbolically represented functions to their arguments.module listopsimports aterms;syntaxaterm ":" atermlist -> atermlist {right};aterm "*" atermlist -> aterm {right};"map" -> afun;aterm "@" aterm -> aterm {left};"(" aterm ")" -> aterm {bracket};variables"Fun" -> aterm;equationsT : [] = [T];T : [Ts] = [T, Ts];Fun * [] = [];Fun * [T] = [Fun @ T];Fun * [T, Ts] = (Fun @ T) : (F * [Ts]);map(Fun) @ T = Fun * T;Such a de�nition works well as long as sensible terms are considered. However,([] * map), the empty list mapped over the function map, is also a syntacticallycorrect term, but does not have a clear interpretation. We would rather forbidthis term on the basis of some typing rule without losing the genericity of theterm structure. 315



15 / polymorphic syntax definitionOne application of the generic term structure of aterms, is the representationof parse trees. We add the following function symbolsmodule atreesimports atermssyntax"var" -> afun; "app" -> afun; "prod" -> afun; "lit" -> afun;The following proposition shows how this language can be used to representparse trees over arbitrary grammars. Observe that we use the concrete syntaxof aterms to represent elements of Tree(atrees).Proposition 15.2.19 For any CFG G, there is an injection d e : Tree(G) !Tree(aterms) such that Tree(G) is isomorphic with its d e image in aterms, i.e.,Tree(G) �= dTree(G)e.Proof. Given some CFG G �rst de�ne d e : S(G)! Tree(atrees) asdLe = lit("L")d�e = "�" if � 2 Ss(G)then de�ne d e : Tree(G)! Tree(atrees) asdLe = "L"dvar(x; �)e = var("x"; d�e)dapp(�1 : : : �n ! �0; [t1; : : : ; tn])e =app(prod([d�1e; : : : ; d�ne]; d�0e); [dt1e; : : : ; dtne])Now we have Tree(G) �= dTree(G)e. 2As a result, any sentence in a context-free language can be represented as astring in the �xed language of aterms preserving the structure assigned to it bythe context-free grammar describing the language. For example, the parse treefor the string s 0 according to the grammar for natural numbers is translatedas follows:dapp("s" nat! nat; ["s" app("0"! nat; ["0"])])e =app(prod([lit("s"), "nat"], "nat"),["s", app(prod([lit("0")], "nat"), ["0"])])The resulting string does not only have a �xed syntax, it is also self descrip-tive. The grammar G can be derived from the aterm that encodes a parse tree.With this encoding we can de�ne very generic, language independent operationson parse trees like substitution, uni�cation and searching of subtrees. Again,the disadvantage of this scheme is that there are (many) aterms that are notencodings of parse trees, e.g., "abc"("def") is a syntactically correct atermbut is not an element of dTree(G)e for any G. Therefore, speci�cations and pro-grams that manipulate aterms encoding parse trees have to type check the termsthey receive and have to preserve well-formedness of the terms they process andconstruct.316



Two-Level Grammars / 15.315.3 Two-Level GrammarsContext-free grammars provide either a strongly typed but rigid syntactic struc-ture or a generic but untyped structure. Two-level grammars provide a methodfor polymorphic syntax de�nition that supports de�nition of generic structureswith type constraints. Two-level grammars have been de�ned in several vari-ants after the original formulation for the de�nition of the syntax of Algol68in van Wijngaarden et al. (1976). Here we introduce a de�nition of two-level grammars that is straightforwardly formulated as two levels of context-free grammars, where level 1 de�nes the syntax of the nonterminals of level 0.The productions at level 0 of a two-level grammar are production schemata thatuniformly describe sets of context-free productions in the same way that poly-morphic functions in a framework like ML (Milner, 1978) describe collections offunctions. Given the extension of context-free grammars to two-level grammars,it is straightforward to generalize two-level grammars to multi-level grammars,in the same way as multi-level speci�cations are de�ned in Part III. In thischapter we will restrict our attention to two-level grammars.De�nition 15.3.1 (Two-Level Grammar) A two-level grammar � is a pairhG1;G0i of context-free grammars such that the sort symbols of G0 are terms,possibly with variables, over G1, i.e., Ss(G0) � Tree(G1 [ V1).The following de�nition gives the meaning of �nite two-level grammars interms of, possibly in�nite, context-free grammars.De�nition 15.3.2 A two-level grammar � corresponds to a, possibly in�nite,context-free grammar [[�]] that is derived from � by taking all substitutions ofsymbols S([[�]]) = f��(�) j � 2 S(G0); � : V1 ! Tree(G1 [ V1)g and productionsP([[�]]) = f��(�1)! ��(�2) j �1 ! �2 2 P(G0); � : V1 ! Tree(G1 [ V1)gi.Through the translation of a two-level grammar � to a CFG [[�]] we immedi-ately have the de�nitions of the term algebra Tree([[�]]) and the language L([[�]]).Another characterization of the trees generated by a two-level grammar is givenby means of inference rules in the following de�nition.De�nition 15.3.3 The S(G0)-indexed family Tree(�) of parse trees over two-level grammar � is de�ned by the inference rules below such that t 2 Tree(�)(�)i� � ` t : � . L 2 Sl(G0)� ` L : L (Lit3)x 2 V(� 0); � 0 m� �� [ V ` var(x; �) : � (Var3)p 2 P(G0); pm� �1 : : : �n ! �; � ` ti : �i (1 � i � n)� ` app(�1 : : : �n ! �; [t1; : : : ; tn]) : � (App3)317



15 / polymorphic syntax definitionRecall from De�nition 15.2.7 that the relation pm� p0 holds if production p0 isan instance of p, i.e., p is more general than p0.We observe that the two ways of de�ning the terms generated by a two-levelgrammar are equivalent.Proposition 15.3.4 � ` t : � i� [[�]] ` t : �Proof. ()) by induction on t: (i) if t = L then [[�]] ` L : L by (Lit2) (ii) ift = var(x; �) then [[�]] ` var(x; �) : � by (Var2) (iii) if t = app(p0; [t1; : : : ; tn]),by induction hypothesis [[�]] ` ti : �i, and by (App3) there is some p 2 P(G0)such that pm� p0, i.e., there is some � such that ��(p) = p0, but then p0 2 P([[�]]),therefore, by (App2), [[�]] ` app(p0; [t1; : : : ; tn]). (() similarly. 2Corollary 15.3.5 Tree([[�]]) = Tree(�) and L(�) = L([[�]])De�nition 15.3.6 (Substitution) A two-level substitution ' is a pair h�1; �0iof a type substitution �1 : (V1 � S(G1))! Tree(G1 [ V1) and an object substi-tution �0 : (V0 � S(G0))! Tree(G0 [V0). The extension �' of ' to level 0 treesis de�ned as �'(L) = L�'(�)(var(x; �)) = �0(var(x; ��1(�)))�'(�)(app(�1 : : : �n ! �; [t1; : : : ; tn])) =app(��1(�1) : : : ��1(�n)! ��1(�); [ �'(�1)(t1); : : : ; �'(�n)(tn)])All other notions de�ned in De�nition 15.2.7 are de�ned in the same way forparse trees. A two-level substitution with �0 equal to the identity function isalso denoted by ���, i.e., a function that substitutes type variables throughout aterm.De�nition 15.3.7 (Parsing) Given a two-level grammar � and a string w theparsing problem is to �nd the set of parse trees �(�)(w) such that�(�)(w)(�) = ft j � ` t : � ^ yield(t) = wgDiscussion 15.3.8 According to the de�nition above, trees over level 1 areused as sort symbols in level 0. However, if we write such grammars, we wantto use strings instead of trees, i.e., S(G0) � L(G1 [ V1) [ S instead of S(G0) �Tree(G1 [ V1) [ S. This entails that the syntax of two level grammars is not�xed, the syntax of the symbols of level 0 is determined by level 1. To parse atwo-level grammar we �rst have to parse level 1 with a parser for a context-freegrammar formalism in order to construct a parser for level 0. Note that we usethe same, SDF style, notation for productions and modules at both levels.318



Examples / 15.415.4 ExamplesIn this section we discuss several examples of two-level grammars. The syntaxof grammars is the adaptation of the syntax of the multi-level speci�cationsof Part III to grammars, i.e., function declarations become productions. It isnot our intention to explain every detail of the notation used, but we do wantto illustrate the general utility of two-level grammars for speci�cation of datatypes.15.4.1 NaturalsModule nat de�nes the syntax of natural number expressions. Level 1 introducesthe sort type and the type constant nat. The expression nat can then be usedas sort at level 0. Consider for example the production "s" nat -> nat oflevel 0. The expression nat in this production, is the constant "nat" -> typede�ned at level 1.module natlevel 1sorts type;syntax"nat" -> type;level 0syntax"0" -> nat;"s" nat -> nat;nat "+" nat -> nat {left};"(" nat ")" -> nat {bracket};variables"I" -> nat; "J" -> nat;equations0 + I = I;s(I) + J = s(I + J);15.4.2 Booleans and Polymorphic ConditionalThe grammar in module nat de�nes monomorphic syntax for natural numbers.Each production has one instance, i.e., the production itself. The followingmodule de�nes the data type of Booleans. At level 1 the type constant bool isintroduced, which is used as sort at level 0. In addition to the ordinary Booleanconnectives, the module de�nes a polymorphic conditional for any type. Thetype variable A in the if-then-else-� production can be instantiated with anytype expression. The production actually denotes the set of all instantiationsof this production. Furthermore, the module de�nes a polymorphic bracketfunction. 319



15 / polymorphic syntax definitionmodule boolimports nat;level 1syntax"bool" -> type;variables"A" -> type; "B" -> type; "C" -> type;level 0syntax"true" -> bool;"false" -> bool;"not" bool -> bool;bool "\/" bool -> bool {left};"if" bool "then" A "else" A "fi" -> A;"(" A ")" -> A {bracket};priorities"not" bool -> bool > bool "\/" bool -> boolvariables"B" -> bool; "X" -> A; "X'" -> A;equationsnot true = false;not false = true;true \/ B = true;false \/ B = B;if true then X else X' fi = X;if false then X else X' fi = X';15.4.3 Polymorphic ListsMost grammar formalisms provide a built-in notion of lists. The next exampleshows how such notation can be introduced with two-level grammars. Modulelist introduces type operators at level 1 denoting the type of polymorphic lists.The operators f g+ and f g* denote the type of non-empty and possibly-empty lists with separators, respectively. The operators " +" and " *" denotethe type of non-empty and possibly-empty lists without separators, respectively.The latter two operators are de�ned in terms of the former two by means ofthe equations that de�ne lists without separators as lists with empty separators,where empty is a sep.At level 0 polymorphic constructor functions for these types are de�ned. Anon-empty list of As separated by Seps is either an A or two lists concatenatedby a Sep. The �rst equation expresses that Sep concatenation associates to theright. An fA Sepg* list is either empty or a non-empty list of As. fA Sepg*-listscan be concatenated by means of the operator [ Sep ]. Note that "^" is usedas a variable to denote separators.320



Examples / 15.4module listimports bool;level 1sorts regtype, sep;syntax"{" type sep "}" "*" -> regtype; type "*" -> regtype;"{" type sep "}" "+" -> regtype; type "+" -> regtype;"[" regtype "]" -> type; "empty" -> sep;variables"Sep" -> sep; "R" -> regtype;equationsA* = {A empty}*; A+ = {A empty}+;level 0syntaxA -> {A Sep}+;{A Sep}+ Sep {A Sep}+ -> {A Sep}+ {right};-> {A Sep}*;{A Sep}+ -> {A Sep}*;"[" {A Sep}* Sep {A Sep}* "]" -> {A Sep}*;-> empty;"(" R ")" -> R {bracket};variables"L" -> {A Sep}*; "Lp" -> {A Sep}+; "^" -> Sep;equations(Lp1 ^ Lp2) ^ Lp3 = Lp1 ^ (Lp2 ^ Lp3);[ ^ L ] = L;[L ^ ] = L;[Lp1 ^ Lp2] = Lp1 ^ Lp2;Observe again how expressions over the syntax de�ned at level 1 are used assorts at level 0. For instance, in the production fA Sepg+ -> fA Sepg*, thesyntax of the expression fA Sepg+ is de�ned by the production "f" type sep"g" "+" -> regtype and by the variables "A" -> type and "Sep" -> sep.We have introduced a new sort regtype at level 1 as the sort of list type con-structors in order to avoid an in�nite chain caused by the injection of arbitrarytypes in the corresponding list type. If we would have declared the list typeconstructor as "f" type sep "g" "+" -> typethe production A -> fA Sepg+ would give rise to the productionsfA Sepg+ -> ffA Sepg+ Sepg+ffA Sepg+ Sepg+ -> fffA Sepg+ Sepg+ Sepg+etc., causing each expression to have in�nitely many non-uni�able types. By in-troducing the new sort regtype, lists are not automatically embedded in types,i.e., A does not unify with fA Sepg+ because their sorts are di�erent. 321



15 / polymorphic syntax definitionThe usage of list types is illustrated in the following grammar of a fragmentof an imperative language. A statement is either an assignment, a while-do loopor a list of statements separated by semicolons.module whileimports list, exp;level 1syntax"var" -> type; "exp" -> type;"stat" -> type; "`;'" -> sep;level 0syntaxvar ":=" exp -> stat;"while" exp "do" stat -> stat;"begin" {stat `;'}* "end" -> stat;";" -> `;';The expression fstat `;'g* is de�ned by the polymorphic productions inmodule list, which have the following instantiations.stat -> {stat `;'}+;{stat `;'}+ `;' {stat `;'}+ -> {stat `;'}+;-> {stat `;'}*;{stat `;'}+ -> {stat `;'}*;15.4.4 Polymorphic OperationsNow that we have a polymorphic de�nition of list construction we can alsode�ne polymorphic functions over lists. For instance, the length function thatcomputes the number of elements of a list can be polymorphically de�ned bythe following speci�cation:module lengthimports list;level 0syntax"length" "(" {A Sep}* ")" -> nat;equationslength() = 0;length(X) = s(0);length(Lp1 ^ Lp2) = length(Lp1) + length(Lp2);15.4.5 Higher-Order FunctionsAnother example of a type constructor is the arrow => of function types. Aterm of sort A => B, i.e., a function from A to B, can be applied to a term ofsort A yielding a B.322



Examples / 15.4module arrowimports list;level 1syntaxtype "=>" type -> type {right};level 0syntax(A => B) "(" A ")" -> B;(A => B) "*" {A Sep}* -> {B Sep}*;variables"F" -> (A => B);The higher-order function * (map) takes as arguments a function from A toB and a list of As and applies the function to each element of the list.equationsF * () = ();F * (X) = F(X);F * (Lp1 ^ Lp2) = [(F * Lp1) ^ (F * Lp2)];If we want to pass functions such as length and map themselves as argu-ments to some higher-order function we need to de�ne the combinators (curriedversions) associated with the functions as follows:syntax"if" -> (bool => A => A => A);"flength" -> ([{A Sep}*] => nat);"(*)" -> (A => B) => ([{A Sep}*] => [{B Sep}*]);(A => [R']) "(" A ")" -> R';([R] => B) "(" R ")" -> B;([R] => [R']) "(" R ")" -> R';equationsif(B)(X)(Y) = if B then X else Y fi;flength(L) = length(L);(*)(F)(L) = F * L;Observe the usage of the operator [ ] that injects regtypes into types inorder to reuse the functionality for type expressions. We added extra applicationoperators to apply functions like flength to lists.These examples illustrate how two-level grammars provide user-de�nable syn-tax for sort symbols and generic de�nition of polymorphic mix-�x functions andconstructors over data types. More advanced examples of two- and multi-levelspeci�cations (with pre�x function signatures instead of grammars) can be foundin Hearn and Meinke (1994), Hearn (1995) and Part III. 323



15 / polymorphic syntax definition15.5 PropertiesWe have seen how two-level grammars can be used for polymorphic syntaxde�nition in algebraic speci�cation. To actually use two-level grammars in anexecutable speci�cation formalism, it is necessary that we can parse strings overthe language speci�ed by a grammar. Unfortunately, the parsing problem fortwo-level grammars is in general undecidable as shown by the following theorem.Theorem 15.5.1 (Sintzo�, 1967) For every semi-Thue system T we can con-struct a Van Wijngaarden Grammar W such that the set S(T ) generated by Tis the set S(W ) generated by W .Corollary 15.5.2 (Sintzo�, 1967) Every recursively enumerable set is gen-erated by a Van Wijngaarden grammar.Corollary 15.5.3 (Sintzo�, 1967) The problem of determining, of a givenstring, whether or not it is generated by a given Van Wijngaarden grammar, isrecursively unsolvable.Although the version of two-level grammars de�ned in this chapter is some-what weaker because it uses trees instead of strings as nonterminals at level0, these constructs can be translated to our two-level grammars. From thesetheorems it follows that we cannot construct terminating parsers for arbitrarytwo-level grammars in a general way. However, for the purpose of polymorphicsyntax de�nition we are interested only in restricted forms of the formalism.One view on two-level grammars is that they are used to abbreviate frequentlyoccurring patterns in context-free grammars, but that in the end we want onlya �nite context-free grammar from a ground subgrammar and the appropriateinstantiations of generic productions. For instance, the grammar of the pro-gramming language in module while gives rise to the instantiation of the listconstruction functions for fstat `;'g* and to the instantiation of the list andmap functions for lists of statements. This is the e�ect that is reached whenreuse of functions is obtained by means of parameterized modules for which only�nitely many instantiations are requested. Although it is clear by looking at agrammar, which instantiations of productions are needed for the implementationof a certain subgrammar, we have not yet found a syntactic characterization ofproductions such that such subgrammar operations are possible. A promisingapproach might be the extension of the layering operations of Hatcher and Rus(1976) and Rus and Jones (1995) to two-level grammars.In context-free grammars empty (�) and chain productions are the cause ofin�nite ambiguities. In two-level grammars they are the cause of the undecid-ability of the formalism. In the rest of this section we investigate the restrictionof the usage of such productions in order to achieve a subclass of the two-levelgrammars with a decidable parsing problem that still allows the kind of gram-mars as shown in x15.4.324



Properties / 15.5De�nition 15.5.4 (�-elimination) The conventional method for eliminating�-productions from context-free grammars applied to two-level grammars worksby adding productions to the level 0 grammar G0 according to the rule�A� ! B 2 G0; �! A0 2 G0; �(A0) = �(A)�(��) ! �(B) 2 G0where � is a most general uni�er of A and A0. After no more productions can beadded, all �-productions are removed. De�ne ee(�) to be the result of removing�-productions from two-level grammar � by the above procedure.Note that �-elimination preserves both the language and the trees generatedby the grammar (if �-trees are identi�ed).Proposition 15.5.5 L(ee(�)) = L(�) and Tree(�) �= Tree(ee(�))Deussen (1975) shows that this method can turn �nite two-level grammarsinto in�nite ones. Consider the following grammar that gives type <an> to eachsentence am with m � n.level 1sorts type, list;syntax"<" list ">" -> type"a" -> listlist "a" -> listvariables"L" -> listlevel 0syntax<L> <a> -> <L a>;"a" -> <a>;-> <a>;If we try to eliminate the last production by substituting it in the �rst productionwe get the productions<L> -> <L a>; %% <a> can be empty-> <a a>; %% <L> unifies with the rhs of -> <a>-> <a a a>; %% <L> unifies with the rhs of -> <a a>and all other productions of the form -> <an> for n > 0. However, for manyapplications �-productions can be eliminated. For instance, the production ->A* in the list grammar in x15.4 can be eliminated by means of the procedureoutlined above, resulting in a �nite two-level grammar de�ning the same lan-guage.In a similar fashion chain productions can be eliminated from grammars.325



15 / polymorphic syntax definitionDe�nition 15.5.6 (Chain Elimination) To eliminate chain production froma two-level grammar �, �rst take the transitive closure of all chains in the level 0grammar G0: �1 ! �2 2 G0; �3 ! �4 2 G0; �(�2) = �(�3)�(�1)! �(�4) 2 G0then use chain productions as substitutions�1 ! �2 2 G0; ��3� ! �4 2 G0; �(�2) = �(�3)�(��1� ! �4) 2 G0;and �nally remove all chain productions from G0 resulting in ce(�).This procedure also preserves the language and trees generated by a grammar.Proposition 15.5.7 L(�) = L(ce(�)) and Tree(�) �= Tree(ce(�)).Also chain elimination does not terminate for all grammars. Take for instancethe grammar for lists in the previous section. If we rede�ne the syntax of thelist operators as"{" type sep "}" "*" -> type;"{" type sep "}" "+" -> typethen we have that A uni�es with fA Sepg+ resulting in in�nitely many produc-tionsA -> {A Sep}+;{A Sep}+ -> {{A Sep}+ Sep}+;{{A Sep}+ Sep}+ -> {{{A Sep}+ Sep}+ Sep}+;...An A is a singleton list of As, which is a singleton list of lists of As, etc.So we see that �-elimination and chain elimination will not terminate forarbitrary grammars. However, for the grammars for which it succeeds we havethe following corollary from Theorem 15.6.8 that we will prove in the nextsection.Corollary 15.5.8 If � is a �nite two-level grammar without �- and chain pro-ductions, then the question w 2 L(�) is decidable.The intuition behind this result is that with �- and chain-free grammars atmost n reductions can be done for a string of length n. Based on the sameidea, the next de�nition de�nes a characterization of a larger class of two-levelgrammars for which the parsing problem is decidable.De�nition 15.5.9 (Finite Chain Property) A two-level grammar � has the�nite chain property if it is (1) �-free, (2) its chain productions are non-cyclicand have a �nite transitive closure and (3) it does not contain redundant pro-ductions, where a production p 2 P(G0) is redundant if there is some p0 2 P(G0)such that p 6= p0 and pm� p0.326



Parsing / 15.6In the next section we will de�ne a parsing algorithm for two-level grammarsand prove that it is a decision procedure for membership of languages de�nedby �nite chain two-level grammars.On the positive side we have a subclass of the two-level grammars with adecidable parsing problem. On the negative side, membership of the class itselfis undecidable.Proposition 15.5.10 It is undecidable whether a two-level grammar satis�esthe �nite chain property.However, decidability of the �nite chain property is not essential for usingtwo-level grammars for language speci�cation. The situation can be comparedto ambiguity of context-free grammars. Although it is undecidable whether acontext-free grammar is ambiguous, it is a good formalism for de�ning unam-biguous languages. A large class of grammars is evidently non-ambiguous andfor others ambiguities will turn up when working with the grammars.The examples presented in x15.4 satisfy the �nite chain property, except forthe empty production -> fA Sepg* for lists. As remarked above this productionis not a problematic �-production because it can be eliminated from the gram-mar. In general we can follow the following procedure for determining whethera grammar has the �nite chain property: (1) Try to eliminate �-productionsby the method of De�nition 15.5.4. (2) Try to eliminate chain rules by meansof the method in De�nition 15.5.6. (3) If this terminates we know that thegrammar has the �nite chain property and that we can parse with it (see nextsection). (4) If either step (1) or step (2) takes too long, this is a hint that itdoes not terminate. In such cases we can inspect the list of �-productions orchain productions added by the elimination procedures. These traces will givea clue about the productions that cause the nontermination, because these willlead to a repetition of similar productions, as we saw in the example above.This information can be used to redesign the grammar such that it satis�es the�nite chain property.15.6 ParsingIn this section we de�ne a parsing algorithm for �nite chain two-level grammars.The parsing algorithm below is a parallel bottom-up parsing algorithm thatcomputes all parse trees for a sentence. This procedure is similar to the Hindley-Milner type assignment procedure used in functional languages, that assigns toeach expression a single principal type (Damas and Milner, 1982). The di�erenceis that in two-level grammars strings can have more than one principal type dueto ambiguities. It will turn out that for �nite chain two-level grammars thereare only �nitely many principal types for a string. We �rst de�ne a functionthat gives the type of a parse tree. 327



15 / polymorphic syntax definitionDe�nition 15.6.1 The type of a parse tree is de�ned as:type(L) = Ltype(var(x; �)) = �type(app(�1 : : : �n ! �; [t1; : : : ; tn])) = �Next we de�ne the data structure of parse con�gurations that is used inparsing.De�nition 15.6.2 A parse con�guration (~t � a1 : : : an)� is an element of theset Tree(� [ V)� � Sl(�)� � Set(V1), i.e., a triple consisting of a list of trees~t = t1 : : : tm (the stack), a list of literals a1 : : : an (the remaining input) and aset of sort variables � (the sort variables over level 1 that are used in ~t ).Algorithm 15.6.3 De�ne the function parse(�) : S(�)� ! Set(Tree(�)) asparse(�)(w) = ft j (� � w))�� (t � �)gwhere )�� is the transitive closure of the one-step parse relation )� on parsecon�gurations, which is de�ned by the rules(~t � a1 a2 : : : an)� )� (~t a1 � a2 : : : an)� (Shift)x 2 V(� 0); � = ��(� 0)(~t x � ~a)� )� (~t var(x; �) � ~a)�[ vars(�) (Var)p 2 P(G0); ��(p) = �! �; j�j = m; mgu(�; type(t1; : : : ; tm)) = �(~t t1 : : : tm � ~a)� )� (~t ���(app(p; [t1; : : : ; tm])) � ~a)�[ vars(��(p)) (Red)where � : V1 ! V1 is a renaming of sort variables occurring in � such that�(�) \ � = ;. We identify con�gurations that are the same up to renaming ofsort variables.We now prove that the algorithm is a correct implementation of �(�) for�nite chain two-level grammars. We �rst show that the trees produced by theparser are correct parse trees.Lemma 15.6.4 (Sound) 8t 2 Tree(�) : t 2 parse(�)(w) ) yield(t) = wProof. We �rst prove that if (~t1 � ~a1) )� (~t2 � ~a2), then yield(~t1) ~a1 =yield(~t2) ~a2. For (Shift) and (Var) the property clearly holds. In (Red) we seeyield(~t t1 : : : tm)~a = yield(~t ���(app(p; [t1 : : : tm])))~a by de�nition of yield and bythe fact that type substitutions do not a�ect the yield of a tree. But then alsofor (~t1 � ~a1) )�� (~t2 � ~a2) we have yield(~t1) ~a1 = yield(~t2) ~a2. In particular, if(� � w))�� (t � �) we have that w = yield(�)w = yield(t)�. 2Next we show that the parser is complete, in the sense that any parse tree forthe sentence can be derived by instantiating one of the parse trees produced bythe parser.328



Parsing / 15.6Lemma 15.6.5 (Complete) 8t 2 Tree(�) : yield(t) = w ) 9t0 m� t : t0 2parse(�)(w)Proof. By induction on t: (1) if t = L then parse(�)(L) 3 Lm� L.(2) if t = var(x; �), there is some � 0 m� � such that x 2 V(� 0), but thenparse(�)(x) 3 var(x; � 0)m� var(x; �).(3) If t = app(p; [t1; : : : ; tn]) with p = �1 : : : �n ! � (a) By de�nition of yieldwe have yield(t) = yield(t1) : : : yield(tn) = w1 : : : wn with yield(ti) = wi for1 � i � n. (b) By induction we have t0i m� ti for 1 � i � n|and thus � 0i m� �iwith � 0i = type(t0i)|such that t0i 2 parse(�)(wi). (c) By (App) there is some� 001 : : : � 00n ! � 00 = p00 2 P(G0) such that p00 m� p (variables of p00 and p dis-junct). By (b) and (c) there is a substitution �0 such that ��0(� 001 : : : � 00n ) =�1 : : : �n = ��0(� 01 : : : � 0n). Then there is also a most general uni�er, say �. Nowtake t0 = ���(app(p00; [t01 : : : t0n])) 2 Tree(�). It is clear that t0 m� t and that(� � w1 : : : wn))�� (t01 : : : t0n � �))� (t0 � �) 2Next we show that the set of parse trees produced by the algorithm is minimalin the sense that it generates only the most general parse trees for a string.Lemma 15.6.6 (Minimal) 8t; t0 2 parse(�)(w) : tm� t0 _ t0 m� t) t := t0Proof. Assume that t; t0 2 parse(�)(w) and that tm t0. Because both trees arein the set there must be sequences of con�gurations for their derivation. Becausetm t0, the trees have the same structure, i.e., the con�guration sequences havethe same number of reductions and shifts. But also because t m t0, there mustbe some point at which the sequences diverge, i.e.,(� � w))�� (~t1~t2 � ~a))� (~t1 ���1(app(p1; ~t2)) � ~a))�� (t � �)and (� � w))�� (~t1~t2 � ~a))� (~t1 ���2(app(p2; ~t2)) � ~a))�� (t0 � �)for t and t0, respectively. Because tm t0 we must have ��1(p1)m ��2(p2). Now wehave either (1) p1 = p2 and �1 m �2, but then �2 is not a most general uni�erand hence t0 62 parse(�)(w) or (2) if p1 m p2, then � does not satisfy the �nitechain property because it has the redundant production p2. 2Finally we prove that parse yields a �nite set of parse trees, entailing thatparse is e�ectively computable.Lemma 15.6.7 (Finite) jparse(�)(w)j 2 NProof. (1) For each con�guration and each production there is at most onereduction step (Red) because there is at most one most general uni�er for �and �1 : : : �m. For each con�guration there is at most one (Shift) step and one(Var) step. Therefore, the graph of the relation )� is �nitely branching.(2) The length of con�gurations does not increase (no �-productions). For anycon�guration (~t�~a), j~aj (Shift) steps can be done. A (Red) step with a production� ! � such that j�j > 1 decreases the length of a con�guration, therefore at329



15 / polymorphic syntax definitionmost j~t j=2 such reductions can be performed for a con�guration (~t �~a). By the�nite chain property only �nitely many chain reductions can be done, i.e., foreach con�guration (~t t � ~a) there is a maximal value n such that (~t t � ~a) )n�(~t t0 � ~a). Therefore, the graph of the relation )� has no in�nite paths.(3) From any con�guration (~t�~a) only �nitely many con�gurations are reachable.In particular, for any string w only �nitely many con�gurations of the form (t��)are reachable from (� � w). 2Finally, we see that Algorithm 15.6.3 is a correct implementation of a parserfor �nite chain two-level grammars.Theorem 15.6.8 (Correct) For any �nite chain two-level grammar � andany string w 2 Sl(�)�, parse(�)(w) is a minimal and �nite set of parse trees,unique up to renaming of sort variables, that generates �(�)(w).Proof. By Lemma 15.6.4 and Lemma 15.6.5 all and exactly the trees in�(�)(w) can be derived from parse(�)(w). By Lemma 15.6.7 parse(�)(w) is�nite and by Lemma 15.6.6 it is minimal. 2As a result the recognition problem for �nite chain two-level grammars isdecidable.Corollary 15.6.9 (Decidable) For a �nite chain two-level grammar � it isdecidable whether w 2 L(�) and w 2 L(�)(�).The relation )� de�nes a tree shaped search space. Only the types of treesin the con�guration matter for the rest of the process. We would like to identifycon�gurations (~t1 � ~a) and (~t2 � ~a) for which j~t1j = j~t2j and type(~t1) = type(~t2).This would lead to a generalization of the graph structured stack and the parseforests of Tomita (1985) to parsing for two-level grammars.15.7 Related FormalismsIn the same way that context-free grammars correspond to �rst-order signa-tures, two-level grammars correspond to two-level signatures. The type systemof the functional programming language ML (Milner, 1978) can be consideredas two-level signatures in which the expressions over level 1 are single-sortedexpressions of sort type. This system was used to introduce parametric poly-morphic functions. Two-level signatures are discussed in Poign�e (1986), M�oller(1987), Meinke (1992a). After a two-level signature is expanded, a, possiblyin�nite, one-level signature results that can again be used as the speci�cation ofthe sort space of a level 0 signature. In this manner the extension of signaturesto two-level signatures can be generalized to signatures with three and more lev-els. Hearn and Meinke (1994) introduce the three-level algebraic speci�cationformalism Atlas, which is generalized by Hearn (1995) to a multi-level speci�ca-tion formalism. The complete and formal speci�cation of the related multi-levelspeci�cation formalism MLS is presented in Part III. MLS supports overloadingof function symbols, which entails that a term can have in�nitely many types,330



Related Formalisms / 15.7but only �nitely many most general or principal types. This property is notrespected by general two-level grammars as discussed in x15.5.On the grammatical side, many variants of two-level grammars have beenproposed in the literature for various purposes. Van Wijngaarden grammars(VWG) (van Wijngaarden et al., 1976) were developed to express the syntaxand semantics of Algol68. In VWGs strings, instead of trees, over level 1 are usedas nonterminals (hypernotions) at level 0. This leads to the problem of gram-matical uni�cation|whether two sentential forms over a context-free grammarare uni�able by means of a substitution of nonterminals with strings|whichMaluszynski (1984) shows to be undecidable. The transparent two-level gram-mars of Maluszynski (1984) are a restriction of VWGs such that grammaticaluni�cation comes down to term uni�cation. Another restriction of VWGs arethe Extended A�x Grammars (EAG) (Watt, 1977) that restrict the order inwhich the variables in nonterminals at level 0 can be instantiated.The observation that two-level grammars are Turing equivalent sparked an-other development: two-level grammars as logic or functional programming lan-guages. The (context-free) metagrammar (level 1) is used to de�ne the syntax oflanguage and semantic domains. The hypergrammar (level 0) is used to de�nethe operations on the data. See for example Maluszynski (1984).De�nite Clause Grammars (DCG) introduced by Pereira and Warren (1980)are grammars embedded in Prolog programs. They are equivalent to two-levelgrammars with a �xed level 1 equivalent to the following grammarmodule dcglevel 1sorts fun, term;syntax[a-z][A-Za-z0-9]* -> fun;fun -> term;fun "(" {term ","}* ")" -> term;variables[A-Z][A-Za-z0-9]* -> term;that de�nes an untyped domain of terms that can be used as grammar symbolsin level 0. These terms are then typically used at level 0 in productions such asthe following from a tiny natural language grammar:np(N) vp(N) -> s;det(N) n(N) rel(N) -> np(N);Parsing of DCGs|parsing as deduction (Pereira and Warren, 1983)|usesProlog's built-in resolution strategy to answer queries like w 2 L(G)(s). Withthe normal evaluation strategy of Prolog (SLD resolution) this comes down totop-down backtrack parsing. Problems with this strategy are that it cannotcope with left-recursion and that already computed answers are not reused.The tabulation strategy described in Warren (1992) partially overcomes theseproblems. One of the problems of the latter approach is that uni�cation inProlog is not many-sorted, disabling solutions like that with regtype in x15.4.331



15 / polymorphic syntax definition15.8 ConclusionsAlgebraic speci�cation with �rst-order signatures or context-free grammars en-force a choice between strongly typed structures with little genericity or genericoperations over untyped structures. Polymorphism combines genericity withtypedness, making it possible to develop libraries of speci�cations. In this chap-ter we have discussed how the integration of algebraic speci�cation with user-de�nable syntax and polymorphism can be materialized. The extension withpolymorphism of algebraic speci�cation formalisms that use context-free gram-mars as signatures, e.g., OBJ or ASF+SDF, leads necessarily to formalisms withtwo-level grammars as signatures. Likewise, the extension with user-de�nablesyntax of formalisms that have polymorphic signatures, including polymorphicfunctional and logic programming languages, leads to two-level grammars.In two-level grammars level 1 de�nes the syntax of sort symbols used at level 0.Sort terms with variables are interpreted as sort schemata that can have manyinstantiations. Productions at level 0 with such sorts are production schemata,i.e., declarations of polymorphic functions with mix-�x syntax. Thus two-levelgrammars combine polymorphism with user-de�nable syntax, as we illustratedby means of a number of examples of polymorphic syntax de�nition in data typeand programming language speci�cations.Although the parsing problem for context-free grammars and the type-assign-ment problem for two-level signatures are decidable, the parsing problem for theintegration of both formalisms is undecidable if no restrictions are considered.We de�ned an intuitive restriction of the class of two-level grammars that resultsin a class of two-level grammars for which the parsing problem is decidable andfor which we de�ned a parsing algorithm that yields a minimal and �nite set ofmost general parse trees for each string.
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16Concluding RemarksIn this thesis we have investigated techniques for improving the expressivity ofsyntax de�nitions for language prototyping. The main results are the designand implementation of the syntax de�nition formalism SDF2, the design andspeci�cation of the multi-level algebraic speci�cation formalism MLS and theoryabout polymorphic syntax de�nition. There are many opportunities for furtherresearch. Here we mention a few.16.1 SyntaxImplementation of SDF2 There are several possibilities for improvement ofthe implementation of SDF2. The parser generator that is currently imple-mented in ASF+SDF is not e�cient enough and probably needs to be reimple-mented in an imperative language that o�ers direct access to data structures.A more generic matter is the compact representation of parse tables. Due tothe use of productions in the goto relation more transitions are computed thanin a normal LR table. This is necessary to deal with priorities. However, forsorts that have no priorities and productions that have the same priority, thetransitions should be shared. If the sharing is computed before computing thenext state the performance of the parser generator might also be improved.Furthermore, the disambiguation with priorities as multi-set �lters needs to beimplemented.Several improvements of the disambiguation are possible. Priority disam-biguation could be re�ned such that the priority relation applies only to a se-lected number of arguments. Lexical disambiguation rules by means of followrestrictions and reject productions could be generated automatically from thegrammar.Applications of SDF2 The implementation of SDF2 has been tested to gener-ate parsers for ASF+SDF speci�cations by upgrading the syntax part of a spec-i�cation to SDF2. These parsers are used as front-ends for compiled ASF+SDFspeci�cations. The next step is to couple semantics speci�cations directly toSDF2 de�nitions. In that manner the full expressiveness of SDF2 can be used.In principle, SDF2 is suitable for connection with other logics than equationallogic as in ASF+SDF. Experiments could be made with frameworks such as335



16 / concluding remarksfunctional programming, logic programming, and theorem provers to providethese languages with full user-de�nable syntax.The implementation of SDF2 as described here is batch-oriented. A completesyntax de�nition is normalized and fed to the parser generator. To incorporatethe SDF2 implementation in the new ASF+SDF Meta-Environment (Van denBrand et al., 1997c), it might be necessary to reconsider the modular, lazyand incremental parser generation schema of Rekers (1992) to combine it withgrammar normalization and renaming.Filters In Chapter 4 a theoretical framework of disambiguation �lters waspresented. Given the infrastructure provided by the SDF2 implementation,experiments with disambiguation �lters could be performed. Also the de�nitionof lexical disambiguation by means of �lters should be explored. Given suchexperimental �lters, the investigation of optimized combinations of parsers and�lters could be further pursued and generalized.Parsers for Polymorphic Syntax De�nitions In Chapter 15 an interpretativeparsing algorithm for two-level grammars is de�ned. A more e�cient imple-mentation of parsing for two-level grammars could be achieved if an LR-likepreprocessing of the grammar into a parse table could be derived. This shouldinvolve uni�cation in the table lookup and storage of binding of types to typevariables in item-sets.Parser Generator Generators In Chapter 5 we derived an adaptation of theLR(0) parser generation algorithm by adapting its underlying parsing schema.The implementation of the derived schema was achieved by adapting an im-plementation of the parser generator. It would be desirable to generate thisimplementation from the schema automatically. This is actually not such afarfetched idea. Shieber et al. (1995) describe the interpretation of parsingschemata by means of logic programs that implement the control of a parser bymaintaining a chart of all items derivable from a sentence. This chart interpre-tation is parameterized with a set of deduction rules for parsing, i.e., a parsingschema.Now consider a chart parser with the schema for Earley's algorithm. In chartparsing the items are computed individually and dynamically. In Earley parsingitems are bundled in sets but these are still computed dynamically. In LRparsing items are also bundled in sets, but the transitions between such item-setsis precomputed, i.e., computed only once for a grammar, inducing a considerablee�ciency gain. All these algorithms are driven by the same parsing schema,but have a di�erent control structure. There is a re�nement relation betweenthem as well. Earley is derived from chart parsing, by taking sets of itemsclosed under prediction. Transitions occur from a set to a new set by shiftingwith some symbol. The initial item-set is the closure of the axiom rules of theschema. In LR these sets are precomputed in the same way. This proceduremight be generalizable to arbitrary parsing schemata. Single premise rules areclosure rules, rules with as one of the premises a token are shift rules, etc. Inthis way we can derive new parser generators by adapting a parsing schema andletting the parser generator generator derive an implementation from it.336



Type Systems / 16.2Extensible Syntax An open problem is the description of the syntax of exten-sible languages. An extensible language is a language that can extend its ownsyntax. ASF+SF itself is an extensible language. The syntax of equations isparameterized with a grammar describing the syntax of terms. This is handledin the current Meta-Environment by separating the de�nition of syntax andequations such that the syntax de�nition can be parsed and analysed beforethe equations are parsed. It would be desirable to be able to mix syntax andequations. This would require the adaptation of the parser during parsing. Thesyntax of two-level grammars is even more extensible. The syntax of the rules inlevel 0 depends on the productions of level 1. Other work in this area includesCardelli et al. (1994) who give a de�nition of a language with extensible syntax.16.2 Type SystemsModule Systems The speci�cation of SDF2 and MLS both contain a speci�-cation of module systems. It would be desirable to generalize these speci�cationsto make the de�nition of the module system orthogonal to the details of the restof the formalism.Type equations The typechecker speci�ed in Chapter 13 considers types aselements of a free term algebra. This means that normal syntactic uni�cationcan be used in type assignment. This is not su�cient if equations over typeexpressions are allowed. Such equations are useful for describing more powerfultype systems, including general product types and type classes without furtherextending the framework. Other examples of the application of type equations inmulti-level algebraic speci�cations to the modelling of type systems include thespeci�cation of type abbreviations, recursive types, record types, the polytypicfunctions of Jansson and Jeuring (1997), the type classes of Haskell and theconstructor classes of Jones (1993).Type assignment is undecidable in general for multi-level speci�cations withtype equations, because it requires E-uni�cation. In Visser (1996b) a prelim-inary study of methods for type assignment that are useful for a subset ofmulti-level speci�cations with type equations is presented.Interaction between Levels In MLS and two-level grammars we have theproblem of transferring values to the next level. Examples are separators inlists and �eld names in records. Currently this has to be done by introducing asort at the type level containing all these values and declaring for each elementthat it generates the same element at the object level below it. A more elegantway should be possible.16.3 Program and Speci�cation SchemataIn this thesis we have applied several methods for reusing syntax de�nitions orspeci�cations. The normalization function of SDF2 generates productions fromthe symbols used in a syntax de�nition, providing abbreviations for frequently337



16 / concluding remarksoccuring patterns. The module mechanism of SDF2 provides reuse of user-de�nable de�nitions. Renaming makes modules even more reuseable by freeingthe user from the particular names chosen in the module that is reused. User-de�nable polymorphic types in MLS allow generic de�nition of data types andhigher-order functions. Overloading and ambiguous grammars provide anothermethod to keep syntax de�nitions concise.A method not covered by all these forms of reuse is one directed at reuseby exploiting the genericity in the structure of data. An example applicationof such genericity is the formatter generator described in Van den Brand andVisser (1996). Given a context-free grammar, a speci�cation of a formatter isgenerated. An extension of this technique to arbitrary transformation rules onterms is presented in Van den Brand et al. (1997b). In this approach the ab-stract derivation rules used to generate speci�cations and their implementationin a generator are intertwined. In Luttik and Visser (1997) the term traversaloperator for rewriting strategies is de�ned using a schema that should be instan-tiated for all functions in the signature. It is desirable to drive the generationof generic functionality by means of such schemata.One approach in this direction is the polytypic programming of Jansson andJeuring (1997), where each regular data structure is associated with a datastructure built from a few primitives such as product and recursion. Very generalrecursion functionals can be de�ned for those primitives structures and thus beimplemented for all regular data types with very little e�ort, i.e., the conversionbetween the data type and its representation in terms of the primitives.A similar result could also be achieved in a �rst-order setting as is illustratedby the preprocessor of Elan (Vittek, 1994) that is used to generate speci�cationsgiven some extended signature. In fact the preprocessor statements correspondto speci�cations with a second-order quantor ranging over signature elements.It would be interesting to consider a full integration of such second-orderquanti�cation in|the syntax de�nition formalism of|an algebraic speci�cationformalism, making second-order quanti�cation over sorts and functions availablein a general approach to generation of derived syntax and equations. This couldbe used for example to make the regular expressions of SDF2 user-de�nable in-stead of built-in constructs or to generate traversal functions. Such speci�cationschemata would provide a kind of reuse not currently available by means of theconventional abstraction facilities.
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AAuxiliary Modules for theSpeci�cation of SDF2In this appendix we include several auxiliary modules used in the speci�cationof SDF2.A.1 Literalsmodule Literalsimports Layoutexportssorts Literallexical syntax\n"�2 ! EscChar\n"[01][0-7][0-7] ! EscChar�[n000-n040"n] ! L-Char[ ntnn] ! L-CharEscChar ! L-Char\n""L-Char�\n"" ! Literalvariables\L"[0-9 0]� ! LiteralA.2 ATermsA.2.1 Constructorsmodule Grammar-Tree-Constructorsimports ATerms7:5:1exportscontext-free syntax\empty-grammar" ! AFun\conc-grammars" ! AFunmodule CC-Sdf-Tree-Constructors 341



A / auxiliary modules for the specification of sdf2imports Kernel-Sdf-Tree-Constructors7:5:2exportscontext-free syntax\char-class" ! AFun\range" ! AFunmodule Sorts-Sdf-Tree-Constructorsimports Kernel-Sdf-Tree-Constructors7:5:2exportscontext-free syntax\sort" ! AFunmodule Literals-Sdf-Tree-Constructorsimports Kernel-Sdf-Tree-Constructors7:5:2exportscontext-free syntax\lit" ! AFunmodule Regular-Sdf-Tree-Constructorsimports ATerms7:5:1exportscontext-free syntax\empty" ! AFun\seq" ! AFun\opt" ! AFun\iter" ! AFun\iter-star" ! AFun\iter-sep" ! AFun\iter-star-sep" ! AFun\iter-n" ! AFun\iter-sep-n" ! AFun\set" ! AFun\pair" ! AFun\func" ! AFun\alt" ! AFun\perm" ! AFunmodule Basic-Sdf-Tree-Constructorsimports Kernel-Sdf-Tree-Constructors7:5:2exportscontext-free syntax\lexical-syntax" ! AFun\context-free-syntax" ! AFun\variables" ! AFun\lexical-variables" ! AFun\cf" ! AFun\lex" ! AFun\varsym" ! AFun342



ATerms / A.2\layout" ! AFunA.2.2 Encoding and Decodingmodule Grammar-ATermsimports Grammar-Tree-ConstructorsA:2:1 Grammar-Syntax7:2exportscontext-free syntaxaterm(Grammar) ! ATermgrammar(ATerm) ! GrammarequationsEncoding of grammars.[1] aterm(;) = empty-grammar[2] aterm(G1 G2) = conc-grammars(aterm(G1); aterm(G2))Decoding of grammars.[3] grammar(empty-grammar) = ;[4] grammar(conc-grammars(T1; T2)) = grammar(T1) grammar(T2)module CC-Sdf-ATermsimports Kernel-Sdf-ATerms7:5:4 CC-Sdf-Syntax7:4:2CC-Sdf-Tree-ConstructorsA:2:1 Character-Arithmeticexportscontext-free syntaxatermlist(OptCharRanges) ! ATermListaterm(Character) ! NatConranges(ATermList) ! CharRangesrange(ATerm) ! CharRangecharacter(ATerm) ! CharacterequationsEncoding character classes.[1] aterm([cr �]) = char-class(atermlist(cr �))[2] atermlist(cr �) = [ ] when cr � =[3] atermlist(cr+1 cr+2 ) = atermlist(cr+1 ) ++ atermlist(cr+2 )[4] atermlist(cr) = [aterm(c)] when cr = c[5] atermlist(c1 � c2) = [range(aterm(c1); aterm(c2))][6] aterm(c) = int(c)Decoding character classes.[7] symbol(char-class([ ])) = [][8] symbol(char-class([Ts])) = [ranges([Ts])][9] ranges([T]) = range(T) 343



A / auxiliary modules for the specification of sdf2[10] ranges([T; Ts]) = range(T) ranges([Ts])[11] range(n) = character(n)[12] range(range(n1; n2)) = character(n1) � character(n2)[13] character(n) = char(n)[14] symbol(n) = [char(n)]module Sorts-Sdf-ATermsimports Kernel-Sdf-ATerms7:5:4 Sorts-Sdf-Tree-ConstructorsA:2:1Sorts-Sdf-Syntax7:4:1equationsEncoding and decoding sorts.[1] aterm(sort(c+)) = sort(literal(""" c+ """))[2] symbol(sort(literal(""" c+ """))) = sort(c+)module Literals-Sdf-ATermsimports Kernel-Sdf-ATerms7:5:4 Literals-Sdf-Tree-ConstructorsA:2:1Literals-Sdf-Syntax7:4:3equationsEncoding and decoding literals.[1] aterm(L) = lit(L)[2] symbol(lit(L)) = Lmodule Priority-Sdf-ATermsimports Kernel-Sdf-ATerms7:5:4 Priority-Sdf-Syntax8:1:1equationsEncoding attributes.[1] aterm(left) = atr("left")[2] aterm(right) = atr("right")[3] aterm(bracket) = atr("bracket")[4] aterm(assoc) = atr("assoc")[5] aterm(non-assoc) = atr("non-assoc")Decoding attributes.[6] attribute(atr("left")) = left[7] attribute(atr("right")) = right[8] attribute(atr("bracket")) = bracket[9] attribute(atr("assoc")) = assoc[10] attribute(atr("non-assoc")) = non-assoc344



ATerms / A.2module Regular-Sdf-ATermsimports Regular-Sdf-Tree-ConstructorsA:2:1 Kernel-Sdf-ATerms7:5:4Regular-Sdf-Syntax8:2:1equationsEncoding regular expressions.[1] aterm(( )) = empty[2] aterm((A �+)) = seq(atermlist(A �+))[3] aterm(A?) = opt(aterm(A))[4] aterm(A+) = iter(aterm(A))[5] aterm(A�) = iter-star(aterm(A))[6] aterm(fA Bg+) = iter-sep(aterm(A); aterm(B))[7] aterm(fA Bg�) = iter-star-sep(aterm(A); aterm(B))[8] aterm(fAg n +) = iter-n(aterm(A); con(n))[9] aterm(fA Bg n +) = iter-sep-n(aterm(A); aterm(B); con(n))[10] aterm(Set[A]) = set(aterm(A))[11] aterm(A # B) = pair(aterm(A); aterm(B))[12] aterm((� ) B)) = func(atermlist(�); aterm(B))[13] aterm(A j B) = alt(aterm(A); aterm(B))[14] aterm(� � �) = perm(atermlist(�))Decoding regular expressions.[15] symbol(empty) = ( )[16] symbol(seq(Tl)) = (A �+) when symbols(Tl) = A �+[17] symbol(opt(T1)) = symbol(T1)?[18] symbol(iter(T1)) = symbol(T1)+[19] symbol(iter-star(T1)) = symbol(T1)�[20] symbol(iter-sep(T1; T2)) = fsymbol(T1) symbol(T2)g+[21] symbol(iter-star-sep(T1; T2)) = fsymbol(T1) symbol(T2)g�[22] symbol(iter-n(T1; n)) = fsymbol(T1)g n +[23] symbol(iter-sep-n(T1; T2; n)) = fsymbol(T1) symbol(T2)g n +[24] symbol(set(T1)) = Set[symbol(T1)][25] symbol(pair(T1; T2)) = symbol(T1) # symbol(T2)[26] symbol(func(Tl1; T2)) = (symbols(Tl1) ) symbol(T2))[27] symbol(alt(T1; T2)) = symbol(T1) j symbol(T2)[28] symbol(perm(Tl)) =� symbols(Tl) �module Basic-Sdf-ATermsimports Basic-Sdf-Tree-ConstructorsA:2:1 Basic-Sdf-Syntax8:3:1Kernel-Sdf-ATerms7:5:4equationsEncoding grammars.[1] aterm(lexical syntax p �) = lexical-syntax(atermlist(p �))[2] aterm(context-free syntax p �) = context-free-syntax(atermlist(p �)) 345



A / auxiliary modules for the specification of sdf2[3] aterm(variables p �) = variables(atermlist(p �))[4] aterm(lexical variables p �) = lexical-variables(atermlist(p �))Encoding symbols.[5] aterm(hA-LEXi) = lex(aterm(A))[6] aterm(hA-CFi) = cf(aterm(A))[7] aterm(hA-VARi) = varsym(aterm(A))[8] aterm(LAYOUT) = layoutDecoding grammars.[9] grammar(lexical-syntax(Tl)) = lexical syntax productions(Tl)[10]grammar(context-free-syntax(Tl)) = context-free syntax productions(Tl)[11] grammar(variables(Tl)) = variables productions(Tl)[12] grammar(lexical-variables(Tl)) = lexical variables productions(Tl)Decoding symbols.[13] symbol(lex(T)) = hsymbol(T)-LEXi[14] symbol(cf(T)) = hsymbol(T)-CFi[15] symbol(varsym(T)) = hsymbol(T)-VARi[16] symbol(layout) = LAYOUTA.3 Renamingsmodule CC-Sdf-Renamingimports Kernel-Sdf-Renaming9:1:3 CC-Sdf-Syntax7:4:2equationsRenaming character classes.[1] [cc] � = ccmodule Literals-Sdf-Renamingimports Kernel-Sdf-Renaming9:1:3 Literals-Sdf-Syntax7:4:3hiddensvariables\L" ! LiteralequationsRenaming literals.[1] [L] � = L346



Renamings / A.3module Sorts-Sdf-Renamingimports Sorts-Sdf-Syntax7:4:1 Kernel-Sdf-Renaming9:1:3equationsRenaming sorts.[1] [S] � = S[2] (sorts �) � = sorts (� )� �module Priority-Sdf-Renamingimports Priority-Sdf-Projection8:1:2 Basic-Sdf-RenamingA:3exportscontext-free syntax\(" Priorities \)" Renamings ! Priorities\(" Group \)G" Renamings ! GroupequationsRenaming symbols and productions in priority declarations.[1] (priorities pr �) � = priorities (pr �) �Lists of priorities.[2] (pr �) � = when pr � =[3] (pr+1 ; pr+2 ) � = (pr+1 ) � ++ (pr+2 ) �Associativity and priority declarations.[4] (g1 as g2) � = (g1 )G � as (g2 )G �[5] (g1> g2) � = (g1 )G �> (g2 )G �[6] (g1> g2> gg+) � = (g1 )G �> g 02> gg 0+ when g 02> gg 0+ = (g2> gg+) �Groups.[7] (g )G � = p 0 when g = p, p 0 = (p) �[8] (fp �g )G � = f(p � )� �g[9] (fas : p �g )G � = fas : (p � )� �gmodule Regular-Sdf-Renamingimports Kernel-Sdf-Renaming9:1:3 Regular-Sdf-Syntax8:2:1equationsRenaming symbols in regular expressions.[1] [( )] � = ( )[2] [(A �+)] � = (B � +) when (A �+ )� � = B �+[3] [A?] � = (A) �?[4] [A+] � = (A) �+ 347



A / auxiliary modules for the specification of sdf2[5] [A�] � = (A) ��[6] [fA Bg+] � = f(A) � (B) �g+[7] [fA Bg�] � = f(A) � (B) �g�[8] [fAg n +] � = f(A) �g n +[9] [fA Bg n +] � = f(A) � (B) �g n +[10] [Set[A]] � = Set[(A) �][11] [A # B] � = (A) � # (B) �[12] [(� ) B)] � = ((� )� � ) (B) �)[13] [A j B] � = (A) � j (B) �module Basic-Sdf-Renamingimports Basic-Sdf-Normalization8:3:2 Kernel-Sdf-Renaming9:1:3exportscontext-free syntax\<" Renamings \-LEX" \>" ! Renamings\<" Renamings \-CF" \>" ! RenamingsequationsRenaming grammars.[1] (context-free syntax p �) � = context-free syntax (p � )� �[2] (lexical syntax p �) � = lexical syntax (p � )� �[3] (variables p �) � = variables (p � )� �[4] (lexical variables p �) � = lexical variables (p � )� �Renaming symbols.[5] [hA-LEXi] � = h(A) �-LEXi[6] [hA-CFi] � = h(A) �-CFi[7] [hA-VARi] � = h(A) �-VARi[8] [LAYOUT] � = LAYOUTApplying h -LEXi to a renaming.[9] h[]-LEXi = [][10] h[A ) B]-LEXi = [hA-LEXi ) hB-LEXi][11] h[p1 ) p2]-LEXi = [hp1-LEXi ) hp2-LEXi][12] h[�+1 �+2 ]-LEXi = h[�+1 ]-LEXi ++ h[�+2 ]-LEXiApplying h -CFi to a renaming.[13] h[]-CFi = [][14] h[A ) B]-CFi = [hA-CFi ) hB-CFi][15] h[p1 ) p2]-CFi = [hp1-CFi ) hp2-CFi][16] h[�+1 �+2 ]-CFi = h[�+1 ]-CFi ++ h[�+2 ]-CFi348



SDF2 / A.4module Restrictions-Sdf-Renamingimports Restrictions-Sdf-Syntax8:4:1 Kernel-Sdf-Renaming9:1:3exportscontext-free syntax\(" Restrictions \)" Renamings ! RestrictionsequationsRenaming restrictions.[1] (restrictions restr�) � = restrictions (restr �) �[2] (restr�) � = when restr � =[3] (� {/{ cc restr�1) � = (� )� � {/{ cc restr�2 when restr�2 = (restr�1) �A.4 SDF2module Sdf2-Projectionimports Kernel-Sdf-Projection7:3:2 Sorts-Sdf-Projection7:4:1Priority-Sdf-Projection8:1:2 Renaming-Sdf-Projection9:1:2Modular-Sdf-Projection9:3:2 Alias-Sdf-Projection9:2:2Restrictions-Sdf-Projection8:4:2module Sdf2-Renamingimports Sdf2-Syntax10:1:1 Kernel-Sdf-Renaming9:1:3 Priority-Sdf-RenamingA:3Regular-Sdf-RenamingA:3 Literals-Sdf-RenamingA:3CC-Sdf-RenamingA:3 Basic-Sdf-RenamingA:3 Sorts-Sdf-RenamingA:3Restrictions-Sdf-RenamingA:3 Modular-Sdf-Renaming9:3:4Alias-Sdf-Renaming9:2:3equations[1] (context-free priorities pr �) � = context-free priorities (pr �) �[2] (lexical priorities pr �) � = lexical priorities (pr �) �[3] [hStarti] � = hStarti[4] [hSTARTi] � = hSTARTimodule Sdf2-Tree-Constructorsimports Kernel-Sdf-Tree-Constructors7:5:2 Basic-Sdf-Tree-ConstructorsA:2:1Modular-Sdf-Tree-Constructors Regular-Sdf-Tree-ConstructorsA:2:1Priority-Sdf-Tree-Constructors CC-Sdf-Tree-ConstructorsA:2:1Sorts-Sdf-Tree-ConstructorsA:2:1 Literals-Sdf-Tree-ConstructorsA:2:1module Sdf2-ATerms 349



A / auxiliary modules for the specification of sdf2imports Sdf2-Tree-ConstructorsA:4 Sdf2-Syntax10:1:1 Kernel-Sdf-ATerms7:5:4Basic-Sdf-ATermsA:2:2 Modular-Sdf-ATerms Regular-Sdf-ATermsA:2:2Priority-Sdf-ATermsA:2:2 CC-Sdf-ATermsA:2:2 Sorts-Sdf-ATermsA:2:2Literals-Sdf-ATermsA:2:2 Restrictions-Sdf-ATermsequations[1] aterm(hSTARTi) = sort("<START>")[2] aterm(hStarti) = sort("<Start>")module Sdf2-Treesimports Sdf2-ATermsA:4 Sdf2-Syntax10:1:1 Kernel-Sdf-Trees7:5:5Priority-Sdf-Trees8:1:4 CC-Sdf-Trees7:5:6 Renaming-Sdf-Trees9:1:4module Sdf2-Equalityimports Kernel-Sdf-Equality7:5:8 Regular-Sdf-Equality Basic-Sdf-Equality8:3:3

350



BAuxiliary Modules forMulti-Level Speci�cationsThis appendix contains the speci�cation of several data types and opererationsused in the speci�cation of multi-level speci�cations. The �rst section containsa couple of standard library modules. The second section de�nes operations onterms such as substitution, matching, uni�cation and renaming of variables.B.1 Library ModulesB.1.1 Layoutmodule Layoutexportslexical syntax[ ntnn] ! LAYOUT\%%"�[nn]� ! LAYOUT\��"�[nn]� ! LAYOUTB.1.2 Booleansmodule Booleansimports LayoutB:1:1exportssorts Boolcontext-free syntax\>" ! Bool\?" ! Bool\:" Bool ! BoolBool \^" Bool ! Bool fassocgBool \_" Bool ! Bool fassocg\(" Bool \)" ! Bool fbracketgpriorities\:"Bool ! Bool > Bool \^"Bool ! Bool > Bool \_"Bool ! Bool 351



B / auxiliary modules for multi-level specificationsvariables[b][0-9 0]� ! Boolequations[1] > ^ b = b [2] > _ b = > [3] : > = ?[4] ? ^ b = ? [5] ? _ b = b [6] : ? = >B.1.3 Error BooleansBoolean predicates are either true or false. In case of type checking this is notappropriate. In case the predicate does not hold a more re�ned value than falseshould be returned that explains the cause of the error. Error Booleans area re�nement of the normal Booleans with a true value > and a sort Error torepresent the false values.Errors The error e1; e2 indicates that both errors ei occurred. The errore1 : e2 indicates that error e1 occurred and that e2 is an explanation of thaterror; as inequation "(X :: L) ++ L' == X :: (L1 ++ L2)" not well-formed:variables "L1; L2" of rhs do not occur in lhsmodule Error-Booleansimports LayoutB:1:1 BooleansB:1:2exportssorts Errorcontext-free syntaxError \;" Error ! Error frightgError \:" Error ! Error frightg\if" Bool \then" Error \else" Error ! Error\(" Error \)" ! Error fbracketgpriorities\if"Bool \then"Error \else"Error ! Error > Error \:"Error ! Error >Error \;"Error ! Errorequations[1] (e1; e2); e3 = e1; e2; e3[2] (e1 : e2) : e3 = e1 : (e2; e3)[3] if > then e1 else e2 = e1[4] if ? then e1 else e2 = e2Error Booleans An error Boolean value is either > (correct, true) or an error.The place normally taken by the value false is here represented by the sort oferrors. Since it is unclear which error should be indicated by the negation of352



Library Modules / B.1>, we do not provide negation. The operations on EBool are ^, ; and ::.The operator ^ is a symmetric conjunction that yields > if both arguments doand otherwise the conjunction of the errors. The operator ; is an assymetricconjunction that prefers the error in its �rst argument discarding the error inits second. This operator should be used to indicate a dependency betweenerrors. If the well-formedness of a construct depends on the well-formedness ofits subconstructs and some conditions, then one can express that the errors inthe subconstructs are more important. Finally, the operator :: has > as rightzero and as left unit. If both arguments are errors it yields the explanation ofthe �rst by the second.exportssorts EBoolcontext-free syntax\>" ! EBoolError ! EBoolEBool \::" EBool ! EBool frightgEBool \;" EBool ! EBool frightgEBool \^" EBool ! EBool frightg\if" Bool \then" EBool \else" EBool ! EBool\(" EBool \)" ! EBool fbracketgpriorities\if"Bool \then"EBool \else"EBool ! EBool >EBool \::"EBool ! EBool > EBool \;"EBool ! EBool >EBool \^"EBool ! EBoolvariables\e"[0-9 0]� ! Error\eb"[0-9 0]� ! EBoolequations[5] > ^ eb = eb[6] eb ^ > = eb[7] e1 ^ e2 = e1; e2[8] >; eb = eb[9] e ; eb = e[10] eb :: > = >[11] > :: eb = eb[12] e1 :: e2 = e1 : e2[13] if > then eb1 else eb2 = eb1[14] if ? then eb1 else eb2 = eb2
353



B / auxiliary modules for multi-level specificationsB.1.4 Naturalsmodule Naturalsimports BooleansB:1:2exportssorts Natlexical syntax[0-9]+ ! Natcontext-free syntaxsucc(Nat) ! Natpred(Nat) ! NatNat \+" Nat ! Nat fleftgmax(Nat, Nat) ! Natzero(Nat) ! Booleq(Nat, Nat) ! Boolvariables[mn][0-9 0]� ! Nat\c�"[0-9 0]� ! CHAR�\c+"[0-9 0]� ! CHAR+The usual equations for the natural numbers are not shown.B.2 Term UtilitiesIn this section we de�ne several data types and operations on terms.B.2.1 Binary Operatorsmodule Binary-Operatorsimports Types12:2:2 Terms12:1:1exportssorts BinOplexical syntax�[ 0 ntnn%()n[n]:]��[a-zA-Z0-9 0 ntnn%()n[n] <>; : ]�[ 0 ntnn%()n[n]]� ! BinOpcontext-free syntax\(" BinOp \)" ! Fun\[" \]" ! Fun\[" Term \]" ! Term\h" \i" ! Fun\h" Term \i" ! TermTerm BinOp Term ! Term fnon-assocgTerm \�" Term \�" Term ! Term fnon-assocgprioritiesTerm Term ! Term > fnon-assoc: Term BinOp Term ! Term,Term \�"Term \�"Term ! Termg > Term \�"Term ! Term354



Term Utilities / B.2variables\�"[0-9 0]� ! BinOpequations[1] t1 � t2 = (�) (t1; t2)[2] t1 .t2. t3 = t2 (t1; t3)[3] [t1; t2] = t1 :: [t2][4] [t] = t :: [ ] otherwise[5] ht1; t2i = t1 ^ ht2i[6] hti = t ^ h i otherwiseB.2.2 Errors over Terms and SignaturesTo provide errors that convey information related to terms and equations wede�ne several error constructors. An example error isfunction "(+)" not declaredmodule SPEC-Errorsimports Error-BooleansB:1:3 OLS12:2:4exportscontext-free syntax\n"" Term \n"" not a well-formed sort declaration ! Errorsort \n"" Term \n"" not declared ! Error\n"" Term \n"" not a well-formed sort ! Errorsort \n"" Term \n"" matches no sort declaration ! Errorfunction \n"" Term \n"" multiply declared ! Errorvariable \n"" Term \n"" multiply declared ! Errorfunction \n"" Term \n"" not declared ! Errorfunction \n"" Term \n""with type \n"" Term \n"" not declared ! Errorvariable \n"" Term \n"" not declared ! Errorterm \n"" Term \n"" not well-formed ! Errorpair \n"" Term \n"" not well-formed ! Errorapplication \n"" Term \n"" not well-formed ! Errorproduct \n"" Term \n"" not well-formed ! Errorarrow \n"" Term \n"" not well-formed ! Errorannotation of \n"" Term \n""with \n"" Term \n"" not well-formed ! Error\n"" Term \n"" is not a function ! Errortype of argument \n"" Term \n""does not match type of domain \n"" Term \n"" ! Errortype of result \n"" Term \n"" 355



B / auxiliary modules for multi-level specificationsdoes not match type of codomain \n"" Term \n"" ! Errorno declaration for function \n"" Term \n""with type \n"" Term \n"" ! Errorequation \n"" Eq \n"" not well-formed ! Errortypes do not match ! Error\variables" \n"" Terms \n"" of rhs not in lhs ! Errorlevel \n"" Nat \n"" ! Errorshould be \n"" Term \n"" ! Errortype \n"" Term \n"" of variable \n"" Term \n""incompatible with declaration ! Errortype \n"" Term \n"" of function \n"" Term \n""incompatible with declaration ! Errortype is \n"" Term \n"" ! Errortypes of variable \n"" Term \n"" incompatible\n"" Term \n"" versus \n"" Term \n"" ! Errorerrors in \module" \n"" Term \n"" ! ErrorB.2.3 Term FunctionsThe sort (Term ) Term) represents functions from terms to terms. The sortis de�ned in order to reuse several common higher-order operations such asfunction composition and mapping a function over a list. Furthermore, wede�ne a conditional for terms, list membership, and term equality.module Term-Functionsimports Terms12:1:1 BooleansB:1:2 Types12:2:2exportssorts (Term) Term)context-free syntax(Term) Term) \(" Term \)" ! Term\id" ! (Term) Term)(Term) Term) \�" (Term) Term) ! (Term) Term) fassocg\if" Bool \then" Term \else" Term ! Term(Term) Term) \�" \(" Terms \)" ! Termseq(Term, Term) ! BoolTerm \2" Terms ! Boolvariables\�"[0-9 0]� ! (Term) Term)equations[1] id(t) = t[2] �1 � �2(t) = �2(�1(t))356



Term Utilities / B.2[3] id � � = �[4] � � id = �[5] ��() =[6] ��(t) = �(t)[7] ��(t+1 ; t+2 ) = ��(t+1 ) ++ ��(t+2 )[8] if > then t1 else t2 = t1[9] if ? then t1 else t2 = t2[10] eq(t; t) = >[11] eq(t; t 0) = ? otherwise[12] t 2 = ?[13] t 2 t 0 = eq(t; t 0)[14] t 2 t+1 ; t+2 = t 2 t+1 _ t 2 t+2B.2.4 Equation FunctionsMap (Term) Term) functions over equations and lists of equations.module Equation-Functionsimports Term-FunctionsB:2:3 Equations12:1:2exportscontext-free syntax(Term) Term) \(" Eq \)" ! Eq(Term) Term) \�e" \(" Eqs \)" ! Eqs\if" Bool \then" Eqs \else" Eqs ! Eqsequations[1] �(t1 � t2) = �(t1) � �(t2)[2] ��e(' �) = when ' � =[3] ��e('; ' �) = �(') ++ ��e(' �)[4] if > then E1 else E2 = E1[5] if ? then E1 else E2 = E2B.2.5 Term SetsThe function f g creates a `set' of terms from a list of terms by removing theduplicates from the list. The usual operations on sets are union ([), intersection(\), di�erence (=), emptiness (`empty'), membership (2) and subset (�). TheCartesian product � yields the set of pairs of the elements of two sets.module Term-Setsimports Term-FunctionsB:2:3 Terms12:1:1 BooleansB:1:2exportssorts TermSet 357



B / auxiliary modules for multi-level specificationscontext-free syntax\f" Terms \g" ! TermSetTermSet \[" TermSet ! TermSet fleftgTermSet \\" TermSet ! TermSet fleftgTermSet \=" TermSet ! TermSet fleftgTermSet \�" TermSet ! TermSet frightg(Term) Term) \�" \(" TermSet \)" ! TermSet\if" Bool \then" TermSet \else" TermSet ! TermSettrms(TermSet) ! Terms\(" TermSet \)" ! TermSet fbracketgempty(TermSet) ! BoolTerm \2" TermSet ! BoolTermSet \�" TermSet ! BoolprioritiesTermSet \�"TermSet ! TermSet > TermSet \="TermSet ! TermSet> TermSet \\"TermSet ! TermSet > TermSet \["TermSet ! TermSet> \if"Bool \then"TermSet \else"TermSet ! TermSetvariables\�"[0-9 0]� ! TermSetequations[1] ft�1; t; t�2; t; t�3g = ft�1; t; t�2; t�3g[2] ft�1g [ ft�2g = ft�1; t�2g[3] fg \ � = fg[4] ft+1 ; t+2 g \ � = ft+1 g \ � [ ft+2 g \ �[5] ftg \ � = if t 2 � then ftg else fg[6] fg = � = fg[7] ft+1 ; t+2 g = � = ft+1 g = � [ ft+2 g = �[8] ftg = � = if t 2 � then fg else ftg[9] ft1g � ft2g = ft1; t2g[10] fg � � = fg[11] ft+1 ; t+2 g � � = ft+1 g � � [ ft+2 g � �[12] � � fg = fg[13] � � ft+1 ; t+2 g = � � ft+1 g [ � � ft+2 g[14] ��(ftsg) = f��(ts)g[15] if > then �1 else �2 = �1[16] if ? then �1 else �2 = �2[17] trms(ftsg) = ts[18] empty(fg) = >[19] empty(ft+g) = ?[20] t 2 ftsg = t 2 ts[21] fg � � = >[22] ftg � � = t 2 �[23] ft+1 ; t+2 g � � = ft+1 g � � ^ ft+2 g � �358



Term Utilities / B.2
B.2.6 VariablesTo extract the variables from a term a family of functions is de�ned. The func-tions di�er in their treatment of variables and the type annotation operator:, but share their de�nition for the other operators. To prevent copying thesame equations for the four functions, the function names are put in a sort.The generic part of the de�nition is expressed by means of a `variable functionname' vs. The functions are `var' that yields the set of all variables in a term,`tvars' that yields the set of all type variables, i.e., variables occurring in annota-tions, `ovars' that yields all `object variables', i.e., variables that are not in typeannotations, and `avars' that yields all object variables with their annotation.module Variablesimports Term-SetsB:2:5exportssorts Varscontext-free syntaxvars ! Varstvars ! Varsavars ! Varsovars ! VarsVars \(" Term \)" ! TermSetVars \�(" Terms \)" ! TermSetVars \(" TermSet \)" ! TermSetvariables\vs" ! Varsequations[1] vs(f) = fg[2] vs(nil) = fg[3] vs(top) = fg[4] vs(t1; t2) = vs(t1) [ vs(t2)[5] vs(t1 t2) = vs(t1) [ vs(t2)[6] vs(t1 � t2) = vs(t1) [ vs(t2)[7] vs(t1 ! t2) = vs(t1) [ vs(t2)[8] vs(ftsg) = vs �( ts)[9] vs �( ) = fg[10] vs �( t) = vs(t)[11] vs �( t+1 ; t+2 ) = vs �( t+1 ) [ vs �( t+2 )[12] vars(x) = fxg[13] vars(t : � ) = vars(t) [ vars(� )[14] ovars(x) = fxg 359



B / auxiliary modules for multi-level specifications[15] ovars(t : �) = ovars(t)[16] tvars(x) = fg[17] tvars(t : �) = tvars(t) [ vars(� )[18] avars(x) = fg[19] avars(x : �) = fx : �g[20] avars(t : �) = avars(t) otherwiseB.2.7 SubstitutionA substitution is a mapping from variables to terms. When applied to a term allvariables occurring in the domain of the substitution are replaced by their resultin the substitution. A �nite substitution maps only a �nite number of variablesto other terms than themselves. Finite substitutions are represented by a listof atomic substitutions of the form x := t, which express the mapping fromvariable x to term t. Note that [] is the empty substitution. The application�(t) of a substitution � to a term t denotes t with each occurrence of a variablex in t replaced by �(x). The union (+) of two substitutions is simply theconcatenation of their lists of atomic substitutions. If a conict arises, i.e., bothsubstitutions contain an assignment to the same variable, the assignment in the�rst substitution has priority over the second as a result of the de�nition of �(x)in equations [1,2,3].module Substitutionimports Term-FunctionsB:2:3 Terms12:1:1 Types12:2:2exportssorts ASubst Substcontext-free syntaxVar \:=" Term ! ASubst\[" ASubst� \]" ! SubstSubst ! (Term) Term)\+"((Term) Term)) ! SubstSubst \+" Subst ! Subst fassocg\(" Subst \)" ! Subst fbracketgvariables\as"[0-9 0]� ! ASubst\as"\�"[0-9 0]� ! ASubst�\as"\+"[0-9 0]� ! ASubst+\�"[0-9 0]� ! Substequations[1] [x := t as �](x) = t[2] [y := t as �](x) = [as �](x) when eq(x; y) = ?[3] [](x) = x[4] �(f) = f360



Term Utilities / B.2[5] �(nil) = nil[6] �(top) = top[7] �(t1; t2) = �(t1); �(t2)[8] �(t1 t2) = �(t1) �(t2)[9] �(t � � ) = �(t) � �(�)[10] �(t! � ) = �(t) ! �(� )[11] �(t : � ) = �(t) : �(� )[12] +(�) = �[13] +(id) = [][14] [as�1] + [as�2] = [as�1 as�2][15] [] � � = �[16] � � [] = �[17] � � [x := t as �] = [x := �(t)] + � � [as �]Failure Substitutions A failure substitution is a substitution or the value? (fail), which denotes failure for partial functions producing substitutions likematching and uni�cation. The operation +? is the strict extension of + to failuresubstitutions. The operation is the consistent composition of two substitutions.Two substitutions are consistent if they coincide on the same variable or thevariable is unde�ned in one or both substitutions.sorts Subst?context-free syntaxSubst ! Subst?\?" ! Subst?Subst? \+?" Subst? ! Subst? fnon-assocgSubst? \�" Subst? ! Subst? fnon-assocgSubst? \�?" Subst? ! Subst? fnon-assocg\if" Bool \then" Subst? \else" Subst? ! Subst?\fail?"(Subst?) ! Bool\+?"(Subst?) ! Subst\(" Subst? \)" ! Subst? fbracketgvariables\�?"[ 0]� ! Subst?prioritiesfnon-assoc: Subst? \+?"Subst? ! Subst?, Subst? \�"Subst? ! Subst?,Subst? \�?"Subst? ! Subst?g > \if"Bool \then"Subst? \else"Subst? ! Subst?equations[18] if > then �? else �? 0 = �?[19] if ? then �? else �? 0 = �? 0[20] �1 +? �2 = �1 + �2[21] �? +? ? = ?[22] ? +? �? = ?[23] ? � �? = ? 361



B / auxiliary modules for multi-level specifications[24] �? � ? = ?[25] [] � �? = �?[26] �? � [] = �?[27] [x := t as �] � � = if eq(t 0; x) _ eq(t 0; t)then [x := t] +? ([as �] � �)else ?when �(x) = t 0[28] ? �? �? = ?[29] �? �? ? = ?[30] �1 �? �2 = +(�1 � �2)[31] fail?(�) = ?[32] fail?(?) = >[33] +?(�) = �B.2.8 MatchingA term t matches with a pattern term t0, notation t0 := t, if there exists asubstitution � such that �(t0) = t. If t matches t0, t0 is said to more generalthan t, which is expressed by means of the predicate m� as t0m� t. If t0m� t we alsosay that t is an instance of t0. This relation gives a partial order on terms. Asubstitution � is a renaming if �(t) := t for any t.module Matchingimports SubstitutionB:2:7 Term-SetsB:2:5exportscontext-free syntaxTerms \:=" Terms ! Subst?Term \m�" Term ! BoolTerm \m" Term ! BoolTerm \ :=" Term ! BoolTermSet \m�" Term ! Boolequations[1] x := t = [x := t][2] t := t = [][3] t1; t2 := t3; t4 = t1; t2 := t3; t4[4] t1 t2 := t3 t4 = t1; t2 := t3; t4[5] t1 � t2 := t3 � t4 = t1; t2 := t3; t4[6] t1 ! t2 := t3 ! t4 = t1; t2 := t3; t4[7] t1 : t2 := t3 : t4 = t1; t2 := t3; t4[8] := = [][9] t1; t+1 := t2; t+2 = t1 := t2 � t+1 := t+2[10] t := t 0 = ? otherwise[11] t1 m� t2 = : fail?(t1 := t2)362



Term Utilities / B.2[12] t1 m t2 = t1 m� t2 ^ : t2 m� t1[13] t1 := t2 = t1 m� t1 ^ t2 m� t1[14] fg m� t = ?[15] ft 0g m� t = t 0 m� t[16] ft+1 ; t+2 g m� t = ft+1 g m� t _ ft+2 g m� tB.2.9 Uni�cationTwo terms t1 and t2 are uni�able if there exists a substitution � such that�(t1) = �(t2). The function `mgu' yields the most general uni�er � for a setof equations E , such that for each equation t1 � t2 in E , �(t1) = �(t2). Thede�nition is based on the algorithm by Martelli and Montanari (1982). Hendriks(1989) speci�es in a similar manner the uni�cation of types in ML. See alsoJouannaud and Kirchner (1991) for a survey on uni�cation.module Uni�cationimports VariablesB:2:6 SubstitutionB:2:7 Equation-FunctionsB:2:4exportscontext-free syntaxmgu(Eqs) ! Subst?Term \ ?=" Term ! Boolequations[1] mgu(t � t) = [][2] mgu(x � t) = [x := t] when x 2 vars(t) = ?[3] mgu(t � x) = [x := t] when x 2 vars(t) = ?[4] mgu(t1; t2 � t3; t4) = mgu(t1 � t3; t2 � t4)[5] mgu(t1 t2 � t3 t4) = mgu(t1 � t3; t2 � t4)[6] mgu(t1 � t2 � t3 � t4) = mgu(t1 � t3; t2 � t4)[7] mgu(t1 ! t2 � t3 ! t4) = mgu(t1 � t3; t2 � t4)[8] mgu(t1 : t2 � t3 : t4) = mgu(t1 � t3; t2 � t4)[9] mgu() = [][10] mgu('+1 ; '+2 ) = mgu(+?(�?)�e('+2 )) �? �?when mgu('+1 ) = �?[11] mgu(E) = ? otherwise[12] t1 ?= t2 = : fail?(mgu(t1 � t2))B.2.10 RenamingIt is sometimes necessary to rename variables in a term such that they aredisjunct from the variables in another term. To this end several functions are363



B / auxiliary modules for multi-level specificationsde�ned to generate new variable names. The function get-fresh produces a freshvariable (not occurring in some set of variables). The function rn �1[�2], with�1 and �2 sets of variables, yields a substitution �1 that renames the variablesin �1 such that none occurs in �2, i.e., �1(�1)\�2 = ;. The other `rn' functionrenames the variables of a term with respect to (the variables of) another term.module Renamingimports VariablesB:2:6 SubstitutionB:2:7exportscontext-free syntaxprime(Var) ! Vardeprime(Var) ! Varbase(Var) ! Varget-fresh(Var, TermSet) ! Termrn TermSet \[" TermSet \]" ! Substrn Term \[" Term \]" ! Termadd(Var, TermSet) ! TermSethiddensvariables\c+"[0-9 0]� ! CHAR+equations[1] prime(var(c+)) = var(c+ "'")[2] deprime(var(c+ "'")) = deprime(var(c+))[3] deprime(x) = x otherwiseThe function `base' takes o� all trailing digits and primes of a variable. Theequations for the function `base' are not shown.[4] add(var(c+1 ); fvar(c+2 )g) = fvar(c+1 c+2 )g[5] add(x; fg) = fxg[6] add(x; ft+1 ; t+2 g) = add(x; ft+1 g) [ add(x; ft+2 g)[7] add(x; ftg) = fxg otherwise[8] get-fresh(x; �) = if x 2 � then get-fresh(prime(x); �) else x[9] rn fg[�] = [][10] rn fx; t �g[�] = [x := y] + rn ft �g[fyg [ �]when get-fresh(deprime(x); �) = yRename a term with respect to the variables in another term.[11] rn t1[t2] = rn �1 \ �2[�2](t1)when vars(t1) = �1, vars(t2) = �2364



CSamenvattingC.1 AlgemeenComputertalen Computertalen worden gebruikt voor het schrijven van com-puterprogramma's, maar ook voor het beschrijven van data en speci�caties.Voortdurend worden nieuwe computertalen ontworpen. De opkomst van nieuwetechnologie stelt andere eisen aan talen. Bijvoorbeeld, de recente groei en ont-wikkeling van het internet heeft de doorbraak van de taal Java tot gevolg gehad.De ontwikkeling van talen voor speciale toepassingsgebieden vereenvoudigt deprogrammatuur voor die gebieden. Nieuwe inzichten op het gebied van pro-grammeertaaltechnieken kunnen ook aanleiding zijn voor de ontwikkeling vaneen nieuwe taal. Kinnersley (1995) geeft een lijst van zo'n 2350 computertalendie ooit, dus sinds ongeveer 1940, ontwikkeld zijn. Aangezien deze lijst vermoe-delijk slechts het topje van een ijsberg weergeeft, is het veilig om te stellen dater iedere week een nieuw ontworpen taal bijkomt.Het ontwikkelen van een nieuwe computertaal is veel werk. Door het snelontwikkelen van een prototype van de taal, de rudimentaire vorm van de uitein-delijke taal waarin de belangrijkste eigenschappen naar voren komen, kunnende idee�en die aan de taal ten grondslag liggen getoetst worden en zonodig bij-gesteld. Ontwerpgereedschappen kunnen het ontwikkelen ondersteunen doorroutinewerk uit handen van de ontwerper te nemen. Dit soort gereedschappenzijn het onderwerp van dit proefschrift. We bespreken hier eerst een aantal ba-sisbegrippen met betrekking tot het prototyperen van talen. Vervolgens gevenwe een samenvatting van de bijdrage die dit proefschrift levert.Syntax en Semantiek Het ontwerp van een computertaal bestaat uit een be-schrijving van de syntaxis en semantiek van de taal. De syntaxis (op z'n engelsvan af nu syntax) van een taal beschrijft de vorm van de zinnen waaruit detaal bestaat en kent aan die zinnen structuur toe. In het geval van een pro-grammeertaal heet een zin een programma, in het geval van een speci�catietaaleen speci�catie, etc. De semantiek beschrijft de betekenis van syntactisch cor-recte zinnen. Niet alle zinnen hebben altijd een semantiek, dat wil zeggen, eenzinvolle betekenis.Als voorbeeld volgt hier de beschrijving van de syntax en semantiek van deeenvoudige taal van rekenkundige expressies met optelling en product. De syn-tax van expressies wordt beschreven door de volgende regels: (1) Een variable365



C / samenvattingis een expressie. (2) Een getal is een expressie. (3) Als x en y expressies zijndan ook x � y en x + y. Volgens deze regels is x � y + 3 een expressie. Desemantiek van expressies de�ni�eren we nu als de waarde van een expressie onderde toekenning van getallen aan variabelen. (1) De waarde van een variabele isdie welke eraan is toegekend. (2) De waarde van een getal is dat getal zelf. (3)Als w1 de waarde is van x en w2 de waarde van y dan is het product van w1 enw2 de waarde van x � y en de som van w1 en w2 de waarde van x+ y.Ambiguiteit De syntax van een taal beschrijft uit welke zinnen een taal be-staat en kent daarnaast aan die zinnen een structuur toe die vaak in de vormvan een boomdiagram voorgesteld wordt. Een zin is ambigu als de syntax ermeer dan �e�en structuur aan toekent. Bijvoorbeeld, volgens de syntax regelshierboven heeft x � y + z twee mogelijke structuren: x � (y + z) of (x � y) + z.Daarmee heeft de zin ook twee betekenissen: het product van x en de som vany en z, of de som van het product van x en y en z.Disambiguatie is het oplossen van dergelijke ambiguiteiten. Een disambigua-tieregel is een regel voor het oplossen ambiguiteiten. De gebruikelijke regel voorde disambiguatie van rekenkundige expressies wordt gegeven door de bekenderegel `meneer van Dalen wacht op antwoord'. Met dit ezelsbruggetje wordtuitgedrukt dat operatoren sterker binden als ze eerder voorkomen in het rijtje`machtsverhe�en, vermenigvulden, delen, optellen, aftrekken'. In het voorbeeldhierboven wordt dus de interpretatie (x � y) + z gekozen volgens deze regel.Syntax De�nitie Formalismen Voor het ontwikkelen van een prototype vaneen taal die door een computer leesbaar is, worden de syntax en semantiek in devorm van een formele de�nitie gegeven. Een syntax de�nitie formalisme is eenformele taal waarin de regels van de syntax opgeschreven kunnen worden. Voorde de�nitie van de syntax van talen worden gewoonlijk context-vrije grammati-ca's gebruikt. Een context-vrije regel van de vorm A1 : : : An ! A0 bepaalt datuit een rijtje zinnen van type A1 tot en met An een zin van type A0 te makenvalt. De volgende context-vrije grammatica beschrijft bijvoorbeeld de syntaxvan expressies zoals hierboven besproken.Var -> ExpNum -> ExpExp "*" Exp -> ExpExp "+" Exp -> ExpNet zoals hierboven zijn deze regels ambigu. Om de gede�nieerde taal te disam-bigueren kunnen syntax de�nitie formalismen methoden verscha�en waarmeedisambiguatieregels geformuleerd kunnen worden. De regel die stelt dat ver-menigvuldiging sterker bindt dan optelling kan bijvoorbeeld uitgedrukt wordendoor de volgende prioriteitsregel.Exp "*" Exp -> Exp > Exp "+" Exp -> ExpEen syntax de�nitie formalisme kan veel meer faciliteiten bieden om te disam-bigueren of om de�nities korter te maken. Het geheel van dit soort faciliteitenbepaalt de uitdrukkingskracht en de bruikbaarheid van het formalisme.366



Resultaten / C.2Algebra��sche Speci�caties Er zijn vele varianten van syntax de�nitie forma-lismen. In het algemeen kan een formalisme worden gekarakteriseerd door: destructuren (bomen) die uit een de�nitie kunnen worden afgeleid, de aeiding vaneen zin uit een structuur, en een ontleder die zinnen analyseert en er een struc-tuur aan toekent. Deze abstracte benadering van syntax is ook van toepassingop de typesystemen van programmeertalen. Een signatuur beschrijft de geldigegetypeerde expressies, uit getypeerde expressies kunnen ongetypeerde expressiesworden afgeleid en een type checker analyseert ongetypeerde expressies en kenter een type aan toe. Op deze manier kunnen grammatica's beschouwd wordenals signaturen voor algebra��sche speci�caties.Een algebra is een verzameling van gegevens met daarbij behorende operaties.Een algebra��sche speci�catie is een beschrijving van een algebra. Bij het gebruikvan grammatica's als signaturen zijn de programma's de gegevens van de algebraen hierop kunnen operaties gede�nieerd worden. Dit verband geeft een manierom ook de semantiek van een taal te beschrijven door middel van een operatieop de structuren van de taal. Zo'n operatie kan bijvoorbeeld een vertaling zijnnaar een andere taal, of een interpretatie waarbij de waarde van een programmawordt uitgerekend zoals in het voorbeeld van expressies.ASF+SDF is een algebra��sch speci�catie formalisme waarin deze idee�en zijnuitgewerkt. ASF+SDF speci�caties kunnen door een computer worden uitge-voerd, waardoor een taalde�nitie direct getest kan worden en daarmee getoetstaan de eisen die aan de taal gesteld worden.C.2 ResultatenIn dit proefschrift worden methoden ontwikkeld waardoor de uitdrukkingskrachten bruikbaarheid van syntax de�nitie formalismen verbeterd worden. Het be-handelt vier hoofonderwerpen: (1) Technieken voor ontleding en disambiguatievan context-vrije talen. (2) Ontwikkeling van een nieuw syntax de�nitie forma-lisme voor ontwerp van context-vrije talen. (3) Ontwerp van een meer-niveaualgebra��sch speci�catieformalisme. (4) Studie van polymorfe syntax de�nitie enontleed problemen hiervan. Naast het introduceren van nieuwe technieken voortaalontwerp en ontwikkeling, bevat het proefschrift ook twee voorbeelden vande toepassing van technieken voor taalontwerp. De talen genoemd bij (2) en (3)zijn ontworpen met behulp van de algebra��sche speci�catietaal ASF+SDF. Despeci�caties worden in dit proefschrift gebruikt om het ontwerp van de talen tepresenteren. We bespreken deze onderwerpen en hun samenhang kort.C.2.1 OntleedtechniekenOntleden zonder Scanner Traditioneel bestaat een ontleder voor een pro-grammeertaal uit twee onderdelen. Een scanner verdeelt de lijst van karakterswaaruit een programma bestaat op in een lijst van lexicale tekens. Deze teken-lijst is vervolgens de invoer voor de eigenlijke ontleder die een boomstructuuraan het programma toekent. In Hoofdstuk 3 wordt een nieuwe ontleedmethodevoorgesteld waarbij geen gebruik wordt gemaakt van een aparte scanner. De367



C / samenvattingontleder leest en analyseert direct de karakters van een programma.De voordelen van ontleden zonder scanner ten opzichte van de traditionelemethode zijn: (1) Er is geen implementatie van een scanner nodig, (2) Er kanmet �e�en formalisme voor de declaratie van de syntax volstaan worden. (3) Lexi-cale disambiguatie kan gebruik maken van de ontleedcontext. (4) De lexicalestructuur blijft behouden. (5) De layout van de programmatekst blijft behoudenin de boom. (6) Een expressievere lexicale syntax, bijvoorbeeld genest commen-taar, wordt mogelijk.De methode bestaat uit de volgende onderdelen: Normaliseren van de gram-matica zorgt ervoor dat een expressief formalisme gebruikt kan worden terwijlde implementatie gebaseerd is op een eenvoudiger formalisme. Lexicale dis-ambiguatie wordt uitgedrukt door middel van twee mechanismen. Zogenaamde`volgbeperkingen' (follow restrictions) verbieden dat een constructie gevolgd kanworden door een bepaalde verzameling karakters. Hiermee kan uitgedrukt wor-den dat de langst mogelijke lezing van een lexicale categorie moet worden geko-zen. Uitsluitingsregels (reject productions) beperken de verzameling bomen dievoor een grammaticale categorie worden gegenereerd. Hiermee kan worden uit-gedrukt dat gereserveerde woorden van de taal niet mogen worden gebruikt alsvariabelen. Het SLR(1) algoritme voor ontledergeneratie is aangepast om dis-ambiguatie door middel van prioriteiten en volgbeperkingen uit te drukken. Ge-generaliseerd LR ontleden wordt gebruikt om beslissingsproblemen dynamischop te lossen. Het GLR algoritme is aangepast om context-vrije grammatica'smet uitsluitingsregels te behandelen.Het blijkt dat deze uitsluitingsregels een grammaticaformalisme opleverenmet een grotere uitdrukkingskracht dan context-vrije grammatica's. Dit wordtaangetoond door middel van een aantal voorbeelden. Het ontleedprobleem vanhet formalisme is echter wel beslisbaar.Disambiguatie�lters Een disambiguatie�lter is een operatie die uit een ver-zameling ontleedbomen een deelverzameling selecteert. Dit biedt een zeer alge-meen raamwerk waarbinnen disambiguatiemethoden bestudeerd kunnen wor-den. Het geeft een beschrijving van disambiguatie die onafhankelijk is vanontleedalgoritmen en geeft derhalve een meer inzichtelijke semantiek aan dis-ambiguatiemethoden. Diverse eigenschappen van �lters worden bestudeerd eneen aantal disambiguatiemethoden wordt als �lter gede�nieerd.Optimalisatie van Ontlederschema's door Disambiguatie�lters Filters geveneen zeer algemene methode om disambiguatie te beschrijven. Een �lter kange��mplementeerd worden door eerst een algemene ontleder te gebruiken die allemogelijke bomen voor een ambigue zin oplevert en vervolgens deze verzame-ling te �lteren, dat wil zeggen een deelverzameling van de mogelijke bomente selecteren. Voor bepaalde toepassingen kan dit echter te duur zijn omdathet aantal mogelijke ontleedbomen exponentieel toeneemt met de lengte van dezin. Voorbeelden hiervan zijn ambigue binaire expressies en lexicale ambigui-teiten. Bij dit soort methoden willen we dan liever een implementatie waarbijdisambiguatie in een zo vroeg mogelijk stadium plaatsvindt, indien mogelijkal bij de constructie van de ontleder. In Hoofdstuk 5 wordt onderzocht hoe368



Resultaten / C.2uit de samenstelling van een ontleder en een disambiguatie�lter een geoptimali-seerde ontleder kan worden afgeleid. Dit wordt gedaan door een speciaal gevalte onderzoeken, namelijk disambiguatie door middel van prioriteiten. Hiervoorwordt een algoritme voor ontledergeneratie afgeleid waardoor prioriteiten in deontleedtabel verwerkt worden. Deze aeiding wordt gedaan door een abstractebeschrijving door middel van een ontleedschema van Earley's ontleedalgoritmete transformeren naar een ontleedschema dat rekening houdt met prioriteiten.C.2.2 Een Familie van Syntax De�nitie FormalismenSDF is een syntax de�nitie formalisme voor de speci�catie van lexicale encontext-vrije syntax van programmeertalen. Het ontwerp van het formalismeis een monolithisch geheel waardoor het moeilijk is om het te implementerenen uit te breiden. In Deel II wordt SDF herontworpen als modulaire en uit-breidbare familie van syntax de�nitie formalismen. Iedere eigenschap van hetformalisme wordt gespeci�ceerd als een orthogonale uitbreiding van het kern-formalisme. De betekenis van veel eigenschappen wordt uitgedrukt door middelvan een normalisatiefunctie die de constructies afbeeldt op constructies in hetkernformalisme. Na vertaling blijven syntaxde�nities over die gebruik makenvan context-vrije grammatica's met karakterklassen, prioriteiten, volgbeperkin-gen, en uitsluitingsregels. Eigenschappen die op deze manier behandeld worden,zijn: literals, reguliere expressies, lexicale en context-vrije syntax, hernoemin-gen, aliasen en modules. De samenstelling van deze eigenschappen vormt hetsyntax de�nitie formalisme SDF2.C.2.3 Meer-Niveau Algebra��sche Speci�catiesIn ASF+SDF worden context-vrije grammatica's gebruikt om de structuur vandata te de�nieren. Context-vrije grammatica's komen overeen met eerste-ordemeersoortige algebra��sche signaturen. Hierbij heeft de typestructuur een be-perkte vorm en kunnen alleen typeconstanten worden gede�nieerd. Dit heeftrigide structuren tot gevolg waarbij veel overeenkomsten tussen datastructurenniet tot uitdrukking komen. Veel aspecten van datastructuren zijn echter on-afhankelijk van de data die ze opslaan. Beschouw bijvoorbeeld lijsten. Bij hetbepalen van de lengte van een lijst is het onbelangrijk of de elementen van delijst getallen zijn of waarheidswaarden. Door te abstraheren van de soort vandata in een datatype kan de de�nitie van zo'n datatype makkelijker hergebruiktworden.Om een exibeler typestructuur te bereiken wordt in Deel III een studie ge-maakt van meer-niveau algebra��sche speci�caties. Hierbij zijn de types zelfde�nieerbaar als een algebra��sch datatype, die worden beschreven door middelvan een algebra��sche signatuur. Bij twee-niveau speci�caties zijn de types inde signatuur van niveau 0 termen over de signatuur van niveau 1. Bij meer-niveau speci�caties wordt deze constructie veralgemeniseerd tot willekeurig veelniveaus, waarbij steeds geldt dat een type gebruikt op niveau n een term is overde signatuur op niveau n+ 1. 369



C / samenvattingEen groot deel van Deel III bestaat uit een formele speci�catie in ASF+SDFvan het meer-niveau algebra��sche speci�catie formalisme MLS. De speci�catiebeschrijft de syntax, de semantiek en het typesysteem van het formalisme. Despeci�catie van het typesysteem is executeerbaar als termherschrijfsysteem envormt een prototype programmeeromgeving voor het formalisme.Er wordt een groot aantal voorbeelden van speci�caties in MLS gegeven dielaten zien hoe polymorfe datatypen gespeci�ceerd kunnen worden. In de eersteplaats worden een aantal standaard voorbeelden uit de wereld van de functi-onele programmeertalen besproken zoals lijsten, product en disjuncte vereni-ging. Daarna volgen voorbeelden die in het normale Hindley/Milner systeemniet uitdrukbaar zijn zoals de gestrati�ceerde stapel en tuples. Met behulp vantypevergelijkingen kunnen geavanceerde typeconstructies gespeci�ceerd worden.Een voorbeeld is de typering van de functie zip die een tuple van lijsten aanelkaar ritst tot een lijst van tuples. Andere voorbeelden zijn typede�nities, tuplefunctor en tuple compositie, recursieve types en typeklassen. Deze voorbeeldenlaten zien dat meer-niveau algebra��sche speci�caties een eenvoudig en uniformraamwerk vormen voor de speci�catie van type structuren.C.2.4 Polymorfe Syntax De�nitieIn het MLS formalisme worden signaturen met pre�x en in�x functies gebruikt.Ook voor context-vrije grammatica's geldt dat ze rigide zijn en niet kunnenabstraheren van de concrete inhoud van een structuur. Het is wenselijk om degrammaticale regels voor een bepaalde structuur te kunnen hergebruiken doorde soort van de elementen van de structuur in te vullen. De volgende regelsgeven bijvoorbeeld op een generieke manier aan hoe lijsten opgebouwd worden.A -> A+A+ A+ -> A+Hierbij is A de parameter van de regels. Door deze parameter op verschillendemanieren in te vullen kan de structuur van lijsten hergebruikt worden. Ookoperaties op lijsten kunnen dan op de generieke structuur gede�nieerd wordenen hergebruikt voor iedere instantiatie.Door het idee van grammatica's als signaturen te combineren met het ideevan meer-niveau speci�caties krijgen we een formalisme voor polymorfe syntaxde�nitie. In een twee-niveau grammatica zijn de grammaticasymbolen van ni-veau 0 ontleedbomen over de grammatica op niveau 1. In Hoofdstuk 15 wordtdit idee uitgewerkt.Een probleem van deze combinatie is dat, hoewel het ontleedprobleem vancontext-vrije grammatica's beslisbaar is en ook het typetoekenningsprobleemvan meer-niveau speci�caties beslisbaar is, het ontleedprobleem van twee-niveaugrammatica's onbeslisbaar is. Hiervoor wordt een oplossing gegeven door debeperking tot twee-niveau grammatica's met eindige ketens. Voor deze klassevan grammatica's is het ontleedprobleem wel beslisbaar, terwijl de beperking detoepassing voor polymorfe syntax de�nitie niet schaadt.370
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